【题目】如图,一个粒子在轴上及第一象限内运动,第1次从运动到,第2次从运动到,第3次从运动到,它接着按图中箭头所示的方向运动.则第2019次时运动到达的点为( )
A.B.C.D.
【答案】D
【解析】
根据现有各点的坐标,分析点的运动次数和运动方向,可以得出一般结论,每条斜线上有点的个数与这条线段在x轴的交点的数一样,且发现x轴上奇数的点箭头方向向右下,偶数的点箭头方向向左上,再根据前n个数的和的计算方法进行求解可得结论.
解:由图形可知:每条斜线上有点的个数与这条线段在x轴的交点的数一样,如图,线段AB上有两个点,线段CD上有5个点,且发现x轴上奇数的点箭头方向向右下,偶数的点箭头方向向左上,
设x轴上的点(n,0),
则1+2+3+4+…+n=,
当n=63时,=2016,
当n=64时,=2080,
∵2016<2019<2080,且第2016次时运动到达的点是(63,0),
∴第2019次时运动到达的点为(62,2),
故选:D.
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=(m为常数)的图象在一,三象限.
(1)求m的取值范围;
(2)如图,若该反比例函数的图象经过ABOD的顶点D,点A、B的坐标分别为(0,4),(﹣3,0).
①求出函数解析式;
②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1
(1)求直线BC的解析式;
(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE=S△BDF?若存在,求出a的值;若不存在,请说明理由;
(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx-3过A(-1,0)、B(3,0),直线AD交抛物线于点D,点D的横坐标为2,点P(m,n)是线段AD上的动点.
(1)求直线AD及抛物线的解析式.
(2)过点P的直线垂直于x轴,交抛物线于点H,求线段PH的长度l与m的关系式,m为何值时,PH最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)E,使得P、H、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线分别交轴、轴于点、,直线过点且分别交轴负半轴、直线于点、,.
(1)求直线的解析式及点的坐标;
(2)若点为直线上一点,过作轴,交直线于,且点的横坐标为,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC的延长线上,连接AD,过B作BE⊥AD,垂足为E,交AC于点F,连接CE.
(1)求证:△BCF≌△ACD.
(2)猜想∠BEC的度数,并说明理由;
(3)探究线段AE,BE,CE之间满足的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD的度数为( )
A.150°B.135°C.120°D.108°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com