精英家教网 > 初中数学 > 题目详情
6.在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA=$\frac{4}{5}$.

分析 先利用勾股定理列式求出斜边AB的长,再根据锐角的余弦等于邻边比斜边列式即可.

解答 解:由勾股定理得,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
所以cosA=$\frac{AC}{AB}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查了锐角三角函数的定义,勾股定理,难点在于求出斜边的长度,作出图形更形象直观.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.若关于x的一元二次方程x2-2(2-k)x+k2+12=0有实数根α、β.
(1)求实数k的取值范围;
(2)若$\frac{α}{β-1}$+$\frac{β}{α-1}$=4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知二次函数y1=ax2+4x+b与y2=bx2+4x+a都有最小值,记y1、y2的最小值分别为m、n.
(1)若m+n=0,求证:对任意的实数x,都有y1+y2≥0;
(2)若m,n均为大于0,且mn=2,记M为m,n中的最大者,求M的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在平面直角坐标系中,抛物线y=$\frac{1}{2}{x}^{2}$-2x-6与x轴交于A.B两点(点A在点B左侧).与y轴交于点T,抛物线顶点为C.
(1)求四边形OTCB的面积;
(2)如图2,抛物线的对称轴与x轴交于点D.线段EF与PQ长度均为2,线段EF在线段DB上运动.线段PQ在y轴上运动,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N.请求出ME′+NF′的最大值,并求当ME′+NF′值最大时,四边形PNMQ周长的最小值;
(3)如图3,连接AT,将△AOT沿x轴向右平移得到△A′O′T′,当T′与直线BC的距离为$\frac{\sqrt{5}}{5}$时,求△A′O′T′与△BCD的重叠部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,点A(0,n),B(m,0)中的m,n是方程组$\left\{\begin{array}{l}{m+n=-2}\\{m-n=-14}\end{array}\right.$的解,点C在x轴的正半轴上,且OA=2OC,AB=10,过点A作AD⊥y轴,过点C作CD⊥AD于点D,动点P从点D出发,以每秒2个单位长度的速度在射线DA上运动,同时另一动点Q从点B出发向终点A运动,速度是每秒3个单位长度,一点停止运动另一点也停止,设运动时间为t秒.
(1)求出点A、B、C的坐标;
(2)连接PC,请用含t的关系式来表示△PAC的面积S;
(3)是否存在某一时刻t,使△PAC的面积等于△BOQ面积的一半?若存在请求出t值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知一次函数y=(1-3m)x+1,若y随x的增大而减小,则m的取值范围是(  )
A.m<$\frac{1}{3}$B.m<-$\frac{1}{3}$C.m>$\frac{1}{3}$D.m>-$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PD⊥OA于点D,点E(8,2),F(0,6),连接PE、PF、EF.
(1)直接写出抛物线和直线EF的解析式.
(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的和为定值,进而猜想:对于任意一点P,PD与PF的和为定值,请你判断该猜想是否正确,并说明理由.
(3)小明进一步探究得出结论:
①使得PD-PE最大的点P是否存在?若存在求出点P的坐标,否则说明理由.
②若将“使△PEF得面积为整数”的点P记作“好点”,且存在多个“好点”,请直接写出所有“好点”的个数,求出使得△PEF的面积最大的好点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足$\frac{CF}{FD}$=$\frac{1}{3}$,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3,给出下列结论:
①△ADF∽△AED;②FG=3;③tan∠E=$\frac{\sqrt{5}}{2}$;④S△ADE=6$\sqrt{5}$.
其中正确的有个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若a,b为实数,且|a+1|+$\sqrt{b-1}$=0,则(ab)2014的值为1.

查看答案和解析>>

同步练习册答案