精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC,∠C=90°,BE平分∠ABC,AC边于点E,ED⊥AB,垂足为D.若△ABC的周长为12,△ADE的周长为6,BC的长为( )

A. 3 B. 4 C. 5 D. 6

【答案】A

【解析】

根据角平分线的定义可知,DE=EC,易证,可知BD=BC,再比较△ABCADE的周长之差,即2BC的长为6,从而计算BC的长.

解:

∠C=90°,BE平分∠ABC,AC边于点E,ED⊥AB,

DE=CE,

中,

BD=BC,

ABC的周长=AB+AC+BC=AD+BD+AE+CE+BC,

ADE=AD+AE+DE,

DE=CE,ABC的周长为12,ADE的周长为6,

BD=BC,

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).

(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一根24cm的筷子置于底面直径为15cm,高为8cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是( )

A. h≤17 B. h≥8 C. 15≤h≤16 D. 7≤h≤16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在RtABC中,AB=AC,BAC=90°,过点A的直线l绕点A旋转,BDlD,CElE.

(1)试说明:DE=BD+CE.

(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读材料,再尝试解决问题:

完全平方式 以及的值为非负数的特点在数学学习中有广泛的应用,比如探求 的最大(小)值时,我们可以这样处理:

解:原式 = .

因为无论 取什么数,都有的值为非负数,所以的最小值为0;此时 时,进而 的最小值是 ;所以当时,原多项式的最小值是 .

请根据上面的解题思路,探求:

⑴.多项式 的最小值是多少,并写出对应的的取值;

⑵.多项式的最大值是多少,并写出对应的的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是等边内一点, .将绕点按顺时针方向旋转,连接

(1)求证: 是等边三角形;

(2)当时,试判断的形状,并说明理由;

(3)探究:当为多少度时, 是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填写推理理由,将过程补充完整:

如图,已知ADBC于点D,EFBC于点F,AD平分BAC.求证:E=1.

证明:∵AD⊥BC,EF⊥BC(已知),

∴∠ADC=∠EFC=90°(垂直的定义).

____________(_____________).

∴∠1=_____(_____________),

∠E=_____(_______________).

又∵AD平分∠BAC(已知),

_____________

∴∠1=∠E(等量代换).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017黑龙江省齐齐哈尔市,第25题,10分)低碳环保,绿色出行的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150/分的速度骑行一段时间,休息了5分钟,再以m/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:

(1)a= b= m=

(2)若小军的速度是120/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;

(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?

(4)若小军的行驶速度是v/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

根据以上信息解决下列问题:
(1)
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为
(3)从选航模项目的 名学生中随机选取 名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的 名学生中恰好有 名男生、 名女生的概率.

查看答案和解析>>

同步练习册答案