精英家教网 > 初中数学 > 题目详情
相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于    厘米.
(或12.36)

试题分析:黄金分割即较大部分与较小部分之比值为1∶0.618,该矩形的较长边是20cm,那么较小边x是,解得x=0.618×20=12.36.
点评:该题主要考查学生对黄金分割的意义,比值的熟记程度,同时提高学生明白数学在审美中的应用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图①,P为△ABC的边AB上一点(P不与点A、点B重合),连接PC,如果△CBP∽△ABC,那么就称P为△ABC的边AB上的相似点.
画法初探
①如图②,在△ABC中,∠ACB>90°,画出△ABC的边AB上的相似点P(画图工具不限,保留画图痕迹或有必要的说明);

辩证思考
②是不是所有的三角形都存在它的边上的相似点?如果是,请说明理由;如果不是,请找出一个不存在边上相似点的三角形;
特例分析
③已知P为△ABC的边AB上的相似点,连接PC,若△ACP∽△ABC,则△ABC的形状是   
④如图③,在△ABC中,AB=AC,∠A=36°,P是边AB上的相似点,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的点(P不与点A、点B重合),作PQ⊥CD,垂足为Q.如果矩形ADQP∽矩形ABCD,那么就称PQ为矩形ABCD的边AB、CD上的相似线.

①类比(1)中的“画法初探”,可以提出问题:对于如图④的矩形ABCD,在不限制画图工具的前提下,如何画出它的边AB、CD上的相似线PQ呢?
你的解答是:   (只需描述PQ的画法,不需在图上画出PQ).
②请继续类比(1)中的“辩证思考”、“特例分析”两个栏目对矩形的相似线进行研究,要求每个栏目提出一个问题并解决.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知正方形ABCD ,点E、F、G、H分别在边AB、BC、CD、DA上,若EGFH,求证EG = FH”(如图1);

(2)如果把条件中的“正方形”改为“长方形”,并设AB =2,BC =3(如图2),试探究EG、FH之间有怎样的数量关系,并证明你的结论;

(3)如果把条件中的“EGFH”改为“EGFH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图3),试求EG的长度。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若△ABC∽△DEF,且面积比为1 :9,则△ABC与△DEF的周长比为( )
A.1 :3B.1 :9C.3 :1D.1 :81

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为           .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子ABDC的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子ABDC的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.

(1)求证:BC=DE;
(2)如果∠ABC=∠CBD ,那么线段FD是线段FG和FB的比例中项吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ADE∽△ABC, AM、AN分别是△ADE和△ABC的高,且周长分别是5和15,则AM:AN=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在四边形中,相交于点,AB⊥AC,CD⊥BD.

(1)求证:
(2)若,求的值

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD中,E为DC的中点,AD: AB= :2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②△EBP∽△EFB;③△ABP∽△ECP;④AOAP=OB2.其中正确的序号是_______________.(把你认为正确的序号都填上)

查看答案和解析>>

同步练习册答案