分析 (1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由BN=DM,即可利用SAS证得△ABN≌△CDM;
(2)易求得∠MND=∠CND=∠2=30°,然后由含30°的直角三角形的性质求解即可求得答案.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠B=∠CDM,
∵M、N分别是AD,BC的中点,
∴BN=DM,
在△ABN和△CDM中,
$\left\{\begin{array}{l}{AB=CD}\\{∠B=∠CDM}\\{BN=DM}\end{array}\right.$,
∴△ABN≌△CDM(SAS);
(2)解:∵MN=$\frac{1}{2}$AD,
∴∠1=∠MND,
∵AD∥BC,
∴∠1=∠CND,
∵∠1=∠2,
∴∠MND=∠CND=∠2,
∴PN=PC,
∵CE⊥MN,
∴∠CEN=90°,
∠END+∠CNP+∠2=180°-∠CEN=90°
又∵∠END=∠CNP=∠2
∴∠2=∠PNE=30°,
∵PE=1,
∴PN=2PE=2,
∴CE=PC+PE=3,
∴CN=$\frac{CE}{cos30°}$=2$\sqrt{3}$,
∵∠MNC=60°,CN=MN=MD,
∴△CNM是等边三角形,
∴BC=2CN=4$\sqrt{3}$.
点评 此题考查了平行四边形的性质、等边三角形的判定与性质、直角三角形的性质、全等三角形的判定与性质以及三角函数等性质.此题难度较大,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com