精英家教网 > 初中数学 > 题目详情
19.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩$\overline{x}$及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是(  )
  甲乙 丙 丁 
 $\overline{x}$ 8.9 9.5 9.5 8.9
 s2 0.92 0.92 1.01 1.03
A.B.C.D.

分析 从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.

解答 解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,
因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;
故选B.

点评 此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=-$\frac{8}{x}$的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是-2.
(1)求一次函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点
(1)当m=2时,a=-$\frac{\sqrt{3}}{2}$,当m=3时,a=-$\frac{\sqrt{3}}{3}$;
(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;
(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为a=-$\frac{1}{n}$;
(4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若点P(m,n)在直角坐标系的第二象限,则一次函数y=mx+n的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知直线y=-$\frac{1}{2}$x+m与反比例函数y=$\frac{k}{x}$的图象在第一象限内交于A,B两点(点A在点B的左侧),分别与x,y轴交于点C,D,AE⊥x轴于E.若OE•CE=12,则k的值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.分解因式:16-x2=(  )
A.(4-x)(4+x)B.(x-4)(x+4)C.(8+x)(8-x)D.(4-x)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,根据图中的信息,若设长颈鹿的身高为xm,梅花鹿的身高为ym,则可列方程组$\left\{\begin{array}{l}{x-y=4}\\{x=3y+1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.我国很多城市水资源缺乏,为了增强居民的节水意识,某市制定了每月用水18立方米以内(不含18立方米)和用水18立方米及以上两种收费标准(收费标准指每立方米水的价格),某用户每月应交水费y(元)是用水量x(立方米)的函数,其函数图象如图所示.
(1)根据图象,求出y关于x的函数表达式.
(2)请根据自来水公司在这两个用水范围内的收费标准,计算以下各家应交的水费,直接填入下表:
  用水量/立方米 水费/元
 小刚 1537.5
 小丽 2568.1 
(3)若某用户计划某个月水费不超过51.6元,则这个月最多可用多少立方米水?

查看答案和解析>>

同步练习册答案