精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,AD⊥DC,AC平分∠DAB.
(1﹚求证:直线CD与⊙O相切于点C;
(2﹚如果AD和AC的长是一元二次方程的两根,求AD、AC、AB的长和∠DAB的度数.

【答案】分析:(1)由AD与DC垂直得到一对角互余,再由OA=OC,利用等边对等角得到一对角相等,由AC为角平分线得到一对角相等,等量代换得到∠CAD=∠ACO,可得出∠ACD+∠ACO=90°,即OC垂直于CD,即可得到CD为圆的切线,得证;
(2)求出已知方程的解,根据斜边大于直角边得到AC大于AD,得到AD与AC的长,利用勾股定理求出CD的长,可得出CD等于斜边的一半,得出∠CAD=30°,∠BAD=60°,可得出∠CAB=30°,在直角三角形ABC中,设BC=x,则有AB=2x,由AC的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.
解答:(1)证明:连接OC,
∵AD⊥DC,
∴∠ACD+∠CAD=90°,
∵OA=OC,
∴∠BAC=∠ACO,
又AC平分∠DAB,
∴∠CAB=∠CAD,
∴∠CAD=∠ACO,
∴∠ACD+∠ACO=90°,即OC⊥DC,
∴DC是⊙O的切线;

(2)解:方程x2-(2+)x+2=0,即(x-2)(x-)=0,
解得:x1=,x2=2,
∵AD<AC,∴AD=,AC=2,
∴CD==1,
∵CD=AC,
∴∠CAD=30°,
∴∠AAB=60°,
连接BC,
∵AB为直径,∴∠ACB=90°,
设BC=x,则AB=2x,
∴x2+22=(2x)2
∵x>0,
∴x=
则AB=
点评:此题考查了切线的判定,勾股定理,以及解一元二次方程-因式分解法,其中切线的判定方法有两种:有点连接证明垂直;无点作垂线证明垂线段等于圆的半径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案