精英家教网 > 初中数学 > 题目详情
(2012•吴中区一模)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴交于负半轴,给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确结论的序号是    (少选,错选均不得分).
【答案】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:由抛物线的开口方向向上可推出a>0;
因为对称轴在y轴右侧,对称轴为x=>0,又因为a>0,∴b<0;
由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0;
由图象可知:对称轴x=>0且对称轴x=<1,∴2a+b>0;
由题意可知:当x=-1时,y=2,∴a-b+c=2,
当x=1时,y=0,∴a+b+c=0.
a-b+c=2与a+b+c=0相加得2a+2c=2,即a+c=1,移项得a=1-c,又∵a>0,c<0,∴a>1.
∴②,③,④正确.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•吴中区一模)先化简,再求值:
1
x-3
x3-6x2+9x
x2-2x
-
1-x
2-x
,其中x=-6.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吴中区一模)如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吴中区一模)解下列关于x的方程:
(1)x2+2x-3=0;         
(2)
x
x-2
-1=
1
x2-4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吴中区一模)已知集合B中的数与集合A中对应的数之间的关系是某个一次函数,若用y表示集合B中的数,用x表示集合A中的数,求y与x之间的函数关系式,并在集合B中写出与集合A中-2,-1,2,3对应的数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吴中区一模)如图,四边形OABC是面积为4的正方形,函数y=
k
x
(x>0)的图象经过点B.
(1)求k的值;
(2)以原点O为位似中心,将正方形OABC放大,使变换后的正方形OMQN与正方形OABC对应的比为2:1,且正方形OMQN在第一象限内与函数y=
k
x
(x>0)的图象交于点F、F,求经过三点F、B、E的抛物线的解析式.

查看答案和解析>>

同步练习册答案