精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连结PQ,设动点运动时间为x秒.

(1)用含x的代数式表示BQ为________cm,PB为_________cm;

(2)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在, 请求出此时x的值;若不存在,请说明理由。

 

 

 

【答案】

(1)BQ=x,PB=8-2x

(2)∵∠B=90°,AC=10cm,BC=6cm

∴AB=8

,四边形APQC的面积等于20cm2

化简:

∴当x=2s时,四边形APQC的面积等于20cm2.

【解析】(1)首先运用勾股定理求出AB边的长度,然后根据路程=速度×时间,分别表示出BQ、PB的长度;

(2)由于∠B=90°,如果△PBQ为等腰三角形,那么只有一种情况,即BP=BQ,由(1)的结果,可列出方程,从而求出x的值;

(3)根据四边形APQC的面积=△ABC的面积-△PBQ的面积,列出方程,根据解的情况即可判断.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案