精英家教网 > 初中数学 > 题目详情
15.比$\sqrt{5}$大的数是(  )
A.1B.$\sqrt{3}$C.2D.$\frac{5}{2}$

分析 根据二次根式的性质进行比较即可.

解答 解:1<$\sqrt{5}$,A错误;
$\sqrt{3}$<$\sqrt{5}$,B错误;
2<$\sqrt{5}$,C错误;
$\frac{5}{2}$>$\sqrt{5}$,D正确,
故选:D.

点评 本题考查的是实数的大小比较,掌握二次根式的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.先化简,再求代数式$\frac{a+1}{a}$÷(a-$\frac{1+2a^2}{3a}$)的值,再选取一个合适的a值代入计算.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是(  )
①年用水量不超过180m3的该市居民家庭按第一档水价交费;
②年用水量超过240m3的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150-180之间;
④该市居民家庭年用水量的平均数不超过180.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.分解因式3m4-48=3(m2+4)(m+2)(m-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点
(1)当m=2时,a=-$\frac{\sqrt{3}}{2}$,当m=3时,a=-$\frac{\sqrt{3}}{3}$;
(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;
(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为a=-$\frac{1}{n}$;
(4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.化简求值:$\frac{a}{{a}^{2}-4}$•$\frac{a+2}{{a}^{2}-3a}$-$\frac{1}{2-a}$,其中a=$\sqrt{2}$+3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若点P(m,n)在直角坐标系的第二象限,则一次函数y=mx+n的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品可获总利润是y元,其中A种产品的生产件数是x.
(1)写出y与x之间的函数关系式;
(2)符合题意的生产方案有几种?请你帮忙设计出来;
(3)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.

查看答案和解析>>

同步练习册答案