精英家教网 > 初中数学 > 题目详情
如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O的位置关系是______;
(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长为______.

【答案】分析:(1)根据圆周角的性质解答;
(2)根据相似三角形的性质及中位线定理解答;
解答:(1)证明:AB是⊙O直径,
∴∠D=90°,
∴∠A+∠ABD=90°.
又∵∠DBC=∠A,
∴∠DBC+∠ABD=90°,即∠ABC=90°.
∵OB是半径,
∴BC与⊙O相切;

(2)解:∵OC垂直平分BD,
∴BE=BD=3,
∵BE⊥OC,
∴∠BEO=∠BEC=90°,∠EOB+∠OBE=90°.
∵∠OBE+∠EBC=∠OBC=90°,∠OBE+∠EBC=∠OBC=90°,
∴∠EOB=∠EBC,
∴△OBE∽△BCE,
=
∴OE===
∵OA=OB,BE=DE,
∴OE是△ABD的中位线,
∴AD=2OE=
点评:此题考查的是三角形与圆的位置关系,中位线定理,以及相似三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A,OC⊥BD于点E.
(1)求证:BC是⊙O的切线;
(2)若BD=12,EC=10,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB是⊙O直径,∠D=35°,则∠BOC等于(  )

查看答案和解析>>

同步练习册答案