精英家教网 > 初中数学 > 题目详情
如图,中,边上的点,
边上,,则等于 (    )
A.B.C.D.
D
分析:连接EM,根据已知可得△BHD∽△BME,△CEM∽△CDA,根据相似比从而不难得到答案.
解答:解:连接EM,
CE:CD=CM:CA=1:3
∴EM平行于AD
∴△BHD∽△BME,△CEM∽△CDA
∴HD:ME=3:5,ME:AD=1:3
∴AH=(3-)ME
∴AH:ME=12:5
∴HG:GM=AH:EM=12:5
∴BH:BM=BD:BE=3:5
∴BH:HG:GM=51:24:10
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,第(1)、(2)题各6分)
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.
(1)求直线AD和抛物线的解析式;
(2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)若矩形的一个短边与长边的比值为,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)      操作:请你在如图15所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD。
(2)      探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由。
(3)      归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知梯形中,,且

⑴如图,上的一点,满足,求的长;
⑵如果点边上移动(点与点不重合),且满足交直线于点,同时交直线于点
①当点在线段的延长线上时,设,求关于的函数关系式,并写出自变量的取值范围;
②写时,写出的长(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原
点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1∶3,
则点C变换后对应的点的坐标为
A.(3,2)B.(-3,-2)或(3,2)
C.(2,D.(2,)或(-2,-

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小亮拿着一把有刻度的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12厘米长的一段恰好遮住电线杆,已知小亮的手臂长约60厘米,则电线杆的高约为________米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•常州)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

、如图所示为一矩形木框,四周为宽度相同的木条,那么这个矩形框的里、外两个矩形是相似形吗?假设木框长为30 cm宽为20cm,木条的宽度为2 cm,试加以验证。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知?ABCD的对角线交于O点,M为OD的中点,过M的直线分别交AD于CD于P、Q,与BA、BC的延长线于E、F

(1)如图1,若EFAC,求证:PE+QF=2PQ;
(2)如图2,若EF与AC不平行,则(1)中的结论是否仍然成立?若成立,加以证明;不成立,请说明理由.

查看答案和解析>>

同步练习册答案