精英家教网 > 初中数学 > 题目详情

我们知道,如果ab>0,那么a、b两个数一定是同号的,即两个数都是正数或两个数都是负数;如果三个数满足abc>0,那么a、b、c三个数都是正数或其中有两个数是负数另一个数是正数….依次类推,当a1a2、…、an满足什么条件时,a1a2an>0(n个数的积为正数)?

答案:
解析:

解:当这n个数均为正数或这n个数中的负因数的个数为偶数时,a1a2an>0


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为
 

(A)2、点P,(B)
1
2
、点P,( C)2、点O,(D)
1
2
、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题精英家教网
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,∠C=90°,学习等边三角形时,我们知道,如果∠A=30°,那么AB=2BC
由此我们猜想,如果AB=2BC,那么∠A=30°,请你利用轴对称变换,证明这个结论.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2004•南京)我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)、点P,( C)2、点O,(D)、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省南京市中考数学试卷(解析版) 题型:解答题

(2004•南京)我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)、点P,( C)2、点O,(D)、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

同步练习册答案