精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,平面直角坐标系中,,点Cx轴上一点,点DOC的中点.

1)求证:BDAC

2)若点Cx轴正半轴上,且BDAC的距离等于2,求点C的坐标;

3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.

【答案】1BDAC;(2;(3

【解析】

1)由AB的坐标求出OAOB的长,进而得到BOA的中点,而DOC的中点,利用中位线定理即可得证;

2)如图1,作BFAC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;

3)如图2,当四边形ABDE为平行四边形时,ABDE,进而得到DE垂直于OC,再由DOC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将AC坐标代入求出kb的值,即可确定出AC解析式.

1

,点B为线段OA的中点,

DOC的中点,即BD的中位线,

2)如图1,作于点F,取AB的中点G,则

BDAC的距离等于2

中,,点GAB的中点,

是等边三角形,.

,则

根据勾股定理得:

Cx轴的正半轴上,

C的坐标为

3)如图2,当四边形ABDE为平行四边形时,

DOC的中点,

Cx轴的正半轴上,

C的坐标为

设直线AC的解析式为.

解得:.

直线AC的解析式为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的方法拼成一个边长为(mn)的正方形.

请用两种不同的方法求图2中阴影部分的面积.

方法1   ;方法2  

观察图2写出三个代数式之间的等量关系:

根据⑵中你发现的等量关系,解决如下问题:若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,按如下步骤作图:

①以点A为圆心,AB长为半径画弧;

②以点C为圆心,CB长为半径画弧,两弧相交于点D

③连接BD,与AC交于点E,连接ADCD

1)求证:

2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;

3)当,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有20箱苹果,以每箱25千克为标准,超过的千克数用正数表示,不足的千克数用负数表示,结果记录如表:

120箱苹果中,最重的一箱比最轻的一箱重   kg

2)与标准质量相比,20箱苹果总计超过或不足多少千克?

3)若苹果每千克售价12元,则售出这20箱苹果可获得多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列数:这串数是由小明按照一定规则写下来的,他第一次写下,第二次接着写,第三次接着写,第四次接着写,沿着这个规则,那么接着后面的三个数应为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观24个字是社会主义核心价值观的基本内容其中:

富强、民主、文明、和谐国家层面的价值目标

自由、平等、公正、法治社会层面的价值取向

爱国、敬业、诚信、友善公民个人层面的价值准则

小光同学将其中的文明和谐自由平等的文字分别贴在4张硬纸板上,制成如右图所示的卡片将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片

1小光第一次抽取的卡片上的文字是国家层面价值目标的概率是

2请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次

社会层面价值取向的概率卡片名称可用字母表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景知识)

数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点、点表示的数分别为,则两点之间的距离,线段的中点表示的数为.

(问题情境)

如图,数轴上点表示的数为,点表示的数为8,点从点出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点从点出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为秒(.

(综合运用)

1)填空:

两点之间的距离________,线段的中点表示的数为__________.

②用含的代数式表示:秒后,点表示的数为____________;点表示的数为___________.

③当_________时,两点相遇,相遇点所表示的数为__________.

2)当为何值时,.

3)若点的中点,点的中点,点在运动过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请求出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市城市居民用电收费方式有以下两种:

(甲)普通电价:全天0.53元/度;

(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.

估计小明家下月总用电量为200度,

⑴若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?

⑵请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?

⑶到下月付费时, 小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?

查看答案和解析>>

同步练习册答案