【题目】如图,在等腰直角三角形ABC中,,D为BC的中点,DEAB,垂足为E,过点B作BF//AC交DE的延长线于点F.
(1)求证:;
(2)连接AF,求证:AF=CF.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由D为BC的中点得出CD=DB,再由等腰直角三角形结合垂直、平行的性质得出BF=DB,∠CBF=∠ACD,由BC=AC,即可证出(SAS);
(2)由(1)得△BDF是等腰直角三角形,由等腰三角形三线合一可得BE垂直平分DF,根据线段垂直平分线的性质可得结论.
证明:(1)∵△ABC是等腰直角三角形,
∴AC=CB,∠CBA=∠CAB=45°,
∵DE⊥AB,
∴∠DEB=90°,∠BDE=45°,
又∵BF∥AC
∴∠CBF=90°,
∴∠BFD=∠BDE=45°,∠CBF=∠ACD=90°,
∴BF=DB,
∵D为BC的中点,
∴CD=DB,
∴BF=CD,
在Rt△CBF和Rt△ACD中,
∴(SAS);
(2)由(1)知:BF=DB,∠CBF=90°,
∵△DBF是等腰直角三角形,
∵DEAB,
∴BE垂直平分DF,
∴AF=AD,
∵,
∴CF=AD,
∴AF=CF.
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与抛物线相交于和,点P是线段AB上异于A、B的动点,过点P作轴于点D,交抛物线于点C.
求抛物线的解析式;
是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
连接AC,直接写出为直角三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是( )
A. 2a﹣b=0
B. a+b+c>0
C. 3a﹣c=0
D. 当a=时,△ABD是等腰直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列条件,能画出唯一△ABC的有_____(填序号)
①,,;②AB=1,BC=2,AC=3;③AB=3,BC=4,;④AB=3,BC=4,;⑤AB=3,BC=4,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随即调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
分组/元 | 频 数 | 频 率 |
1000<x<1200 | 3 | 0.060 |
1200<x<1400 | 12 | 0.240 |
1400<x<1600 | 18 | 0.360 |
1600<x<1800 | a | 0.200 |
1800<x<2000 | 5 | b |
2000<x<2200 | 2 | 0.040 |
合计 | 50 | 1.000 |
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表a= ,b= ,和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.
求抛物线的表达式;
求证:AB平分;
抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法中正确的有( )
①;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km.
A.4个B.3个C.2个D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com