精英家教网 > 初中数学 > 题目详情
在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是___________.
接近
求概率,投一次的概率为,在投一次的概率还是,多次投的概率接近于
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

从一副扑克牌中取出1张红桃、2张黑桃共3张牌,将这3张牌洗匀后,从中任取1张牌恰好是黑桃的概率是  .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一枚均匀的正方体骰子,连续抛掷两次,朝上一面分别为m,n,A的坐标为(m,n),则A点在y=2x上的概率为(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

暑假期间,瑞瑞打算参观上海世博会.她要从中国馆、澳大利亚馆、德国馆、英国馆、日本馆和瑞士馆中预约两个馆重点参观,想用抽签的方式来作决定,于是她做了分别写有以上馆名的六张卡片,从中任意抽取两张来确定预约的场馆,则他恰好抽中中国馆、澳大利亚馆的概率是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列事件属于必然事件的是(  )
A.367人中至少有两人的生日相同
B.某种彩票的中奖率为,购买100张彩票一定中奖
C.掷一次骰子,向上的一面是6点
D.某射击运动员射击一次,命中靶心

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

袋子中装有3个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是_____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题


玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有    种.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小王和小明用如图所示的同一个转盘进行“配紫色”游戏,游戏规则如下:连续转动两次转盘.如果两次转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则配成紫色),则小王得1分,否则小明得1分(如果指针恰好指在分割线上,那么重转一次,直到指针指向一种颜色为止).
(1)请你通过列表法分别求出小王和小明获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由;若不公平,请修改规则,使游戏对双方公平.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______;
(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是______;
(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______.
(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>

同步练习册答案