精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=x2+bx的图像如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<6的范围内无解,则的取值范围是___.

【答案】t<-4或t≥12.

【解析】

先根据已知条件求出二次函数解析式,求出交点坐标,仔细观察图象最后根据函数与方程的关系得到结果.

对称轴为x=-解得b=-4,
所以,二次函数解析式为y=x2-4x

一元二次方程x2-4x-t=0(t为实数)
x=-1,y=5

x=6,y=12

x=2时,y=-4
x2+bx-t=0相当于y=x2+bx与直线y=t的交点的横坐标,
∴当--4≤t<12时,在-1≤x<6的范围内有解

则当t<-4t≥12-1≤x<6的范围内无解

故答案为t<-4t≥12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在半径为2的⊙O中,弦AB=2,⊙O上存在点C,使得弦AC=2,则∠BOC=____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点E.

求证:(1)DE⊥AE;

(2)AE+CE=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为2,∠AOB=120°.

(1)点O到弦AB的距离为  ;.

(2)若点P为优弧AB上一动点(点P不与A、B重合),设∠ABP=α,将ABP沿BP折叠,得到A点的对称点为A′;

∠α=30°,试判断点A′⊙O的位置关系;

BA′⊙O相切于B点,求BP的长;

若线段BA′与优弧APB只有一个公共点,直接写出α的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣4ax+3a.

(Ⅰ)求该二次函数的对称轴;

(Ⅱ)若该二次函数的图象开口向下,当1x4时,y的最大值是2,且当1x4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;

(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当tx1t+1,x25时,均满足y1y2,请结合图象,直接写出t的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).

(1)求∠OBC的度数;

(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;

(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.

(1)求出k,bm的值.

(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是 ________.

(3)P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.

查看答案和解析>>

同步练习册答案