精英家教网 > 初中数学 > 题目详情
15.如图,在四边形ABCD中,AD∥BC,∠B﹦90°,AB﹦8cm,AD﹦24cm,BC﹦26cm,点p从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t s.
(1)t为何值时,四边形PQCD为平行四边形?
(2)t为何值时,四边形PQCD为等腰梯形?(等腰梯形的两腰相等,两底角相等)

分析 (1)根据题意可得PA=t,CQ=3t,则PD=AD-PA=24-t,当PD=CQ时,四边形PQCD为平行四边形,可得方程24-t=3t,解此方程即可求得答案;
(2)过点D作DE⊥BC,则CE=BC-AD=2cm当CQ-PD=4时,四边形PQCD是等腰梯形.即3t-(24-t)=4,求出t的值即可.

解答 解:(1)运动时间为ts.
AP=t,PD=24-t,CQ=3t,
∵经过ts四边形PQCD平行四边形
∴PD=CQ,即24-t=3t,解得t=6.
当t=6s时,四边形PQCD是平行四边形;

(2)如图,过点D作DE⊥BC,则CE=BC-AD=2cm
∵当CQ-PD=4时,四边形PQCD是等腰梯形.即3t-(24-t)=4,
∴t=7.
∴经过7s四边形PQCD是等腰梯形.

点评 此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.先化简,再求代数式($\frac{1}{x+1}$-$\frac{x-2}{{x}^{2}-1}$)÷$\frac{1}{x+1}$的值,其中x=2sin60°+tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)($\sqrt{50}$-$\sqrt{18}$)÷$\sqrt{2}$×$\frac{1}{\sqrt{2}}$
(2)4a2$\sqrt{\frac{1}{8a}}$-7$\sqrt{2{a}^{3}}$
(3)($\sqrt{5}$+5$\sqrt{2}$)(5$\sqrt{2}$-2$\sqrt{5}$)-($\sqrt{5}$-$\sqrt{2}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,D是△ABC的边上一点,M是AC的中点,CN∥AB交DM的延长线于N,且AB=10,BC=8,AC=7.
(1)求证:四边形ADCN是平行四边形;
(2)当AD为何值时,四边形ADCN是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算-$\sqrt{(-3)^{2}}$的结果是-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:
(1)搅匀后从中任意摸出1个球,恰好是红球;
(2)搅匀后从中任意摸出2个球,2个都是红球.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度数.有同学用了下面的方法.但由于一时犯急没有写完整,请你帮他添写完整.
解:∵AD∥CB(  已知  )
∴∠C+∠ADC=180° (两直线平行,同旁内角互补)
又∵∠A=∠C (已知)
∴∠A+∠ADC=180° (等量代换)
∴AB∥CD (同旁内角互补,两直线平行)
∴∠BDC=∠ABD=32° (两直线平行,内错角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知单项式3x2y3与-5x2y2的积为mx4yn,那么m-n=-20.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是“以已知线段为直径作圆”的尺规作图过程.
已知:如图1,线段AB.
求作:以AB为直径的⊙O.
作法:如图2,
(1)分别以A,B为圆心,大于$\frac{1}{2}$AB的长为半径
作弧,两弧相交于点C,D;
(2)作直线CD交AB于点O;
(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.
请回答:该作图的依据是垂直平分线的判定和圆的定义.

查看答案和解析>>

同步练习册答案