精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.
(Ⅰ)∵直线y=kx+b过A、B两点,
-k+b=0
b=1
(1分)
解这个方程组,
得k=1,b=1.(2分)

(Ⅱ)设抛物线的解析式为y=ax2+bx+c,
则有:
a-b+c=0
c=1
4a+2b+c=
9
5
(3分)
解这个方程组,
a=-
1
5
b=
4
5
c=1

∴抛物线的解析式为y=-
1
5
x2+
4
5
x+1.(4分)

(Ⅲ)存在⊙F与直线l和x轴同时相切.
易知抛物线Q的对称轴为x=2,(5分)
①当圆心F在x轴的上方时,
设点F的坐标为(2,y0),把x=2代入y=x+1,
得y=3.
∴抛物线Q的对称轴与直线l的交点为M(2,3).(6分)
∴EF=y0,ME=3,MF=ME-EF=3-y0.(7分)
由直线l:y=x+1知,
∠NMF=45度.
∴△MNF是等腰直角三角形
∴MF=
2
NF=
2
EF
∴3-y0=
2
y0
∴y0=3
2
-3
∴点F的坐标为(2,3
2
-3).(8分)
②当圆心F在x轴的下方时,设点F的坐标为(2,y0),则MF=3-y0,FE=-y0
由△MNF为等腰直角三角形,得3-y0=
2
y0,(9分)
∴y0=-3-3
2

∴点F的坐标为(2,-3-3
2
).(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,-3)三点,对称轴与抛物线相交于点D、与直线BC相交于点E,连接DE.
(1)求该抛物线的解析式;
(2)平面直角坐标系中是否存在一点R,使点R、D、B所成三角形和△DEB全等?若存在,求点R的坐标;若不存在,说明理由;
(3)在抛物线上是否存在一点P,使△PEB的面积是△BDE的面积的一半?若存在,直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-
3
4
x+3的图象与y轴、x轴的交点,点B在二次函数y=
1
8
x2+bx+c
的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3 ②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,AB=4,BC=2,以A为坐标原点,AB所在的直线为x轴,建立直角坐标系.然后将矩形ABCD绕点A逆时针旋转,使点B落在y轴的E点上,则C和D点依次落在第二象限的F点上和x轴的G点上(如图).
(1)求经过B,E,G三点的二次函数解析式;
(2)设直线EF与(1)的二次函数图象相交于另一点H,试求四边形EGBH的周长.
(3)设P为(1)的二次函数图象上的一点,BPEG,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备那出一定的资金做广告.根据经验,每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y=-
x2
10
+
7
10
x+
7
10
.如果把利润看作是销售额减去成本费和广告费,试求当年利润为16万元时,广告费x为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,若S△OMN=9,则a的值是(  )
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

科学研究表明,合理安排各学科的课外学习时间,可以有效的提高学习的效率.教育专家们通过对九年级学生的课外学习时间与学习收益情况进行进一步的研究发现,九年级学生每天课外用于非数学学科的学习时间t(小时)与学习收益量y1的函数关系是图①中的一条折线;每天用于数学学科的学习时间t(小时)与学习收益量y2的函数关系如图②所示:图象中OA是顶点为A的抛物线的一部分,AB是射线.

(1)求出y1与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(2)求出y2与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(3)如果九年级学生每天课外学习的时间为2小时,学习的总收益量为W(W=y1+y2),请问应如何安排学习时间才能使学习的总收益量最大?

查看答案和解析>>

同步练习册答案