精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠B=30°∠C=45°AD平分∠BACBC于点DDE⊥AB,垂足为E。若DE=1,则BC的长为(

A.2+B.C.D.3

【答案】A

【解析】

如图,过点DDF⊥ACF,由角平分线的性质可得DF=DE=1,在Rt△BED中,根据30度角所对直角边等于斜边一半可得BD长,在Rt△CDF中,由∠C=45°,可知△CDF为等腰直角三角形,利用勾股定理可求得CD的长,继而由BC=BD+CD即可求得答案.

如图,过点DDF⊥ACF

∵AD∠BAC的平分线,且DE⊥ABEDF⊥ACF

∴DF=DE=1

Rt△BED中,∠B=30°

∴BD=2DE=2

Rt△CDF中,∠C=45°

∴△CDF为等腰直角三角形,

CF=DF=1

∴CD==

∴BC=BD+CD=

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.

(1)求购进A、B两种纪念品每件各需多少元?

(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?

(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在四边形ABCD中,ABCD,E,F为对角线AC上两点,且AE=CF,DFBE,AC平分BAD.求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次课题学习活动中,老师提出了如下问题:如图,四边形是正方形,点是边的中点,,且交正方形外角平分线于点.请你探究存在怎样的数量关系,并证明你的结论正确.经过探究,小明得出的结论是,而要证明结论,就需要证明所在的两个三角形全等,但显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点是边的中点,小明想到的方法是如图2,取的中点,连接,证明.从而得到.请你参考小明的方法解决下列问题.

1)如图3,若把条件“点是边的中点”改为“点是边上的任意一点”,其余条件不变,证明结论仍然成立;

2)如图4,若把条件“点是边的中点”改为:“点是边延长线上的一点”,其余条件仍不变,那么结论是否还成立?若成立,请完成证明过程,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(11),第2次接着运动到点(20),第3次接着运动到点(32),,按这样的运动规律,经过第2019次运动后,动点P的坐标是(

A. 20180B. 20182C. 20192D. 20190

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】标有-3,-2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.

(1)写出k为负数的概率;

(2)求一次函数y=kx+b的图象不经过第一象限的概率.(用树状图或列举法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D04),B60).若反比例函数y=x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b

1)求反比例函数和直线EF的解析式;

2)求OEF的面积;

3)请结合图象直接写出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在爱满扬州慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.

1)这50名同学捐款的众数为 元,中位数为 元;

2)求这50名同学捐款的平均数;

3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,边上的一点,连接,把绕着点逆时针旋转,得到,连接,若,则的周长是( )

A.16B.15C.13D.12

查看答案和解析>>

同步练习册答案