分析 首先根据一次函数y=-3x+a不经过第三象限,可得a>0;然后根据分式方程的求解方法,求出关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$的解是多少,进而判断出它有整数解时a的值是多少;最后确定出满足题意的a的数量,根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用满足题意的a的数量除以5,求出概率为多少即可.
解答 解:∵一次函数y=-3x+a不经过第三象限,
∴a>0,
∵$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$,
∴x=$\frac{2}{2-a}$,
∵关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$有整数解,
∴a=0,1,3,
∵a=1时,x=2是增根,
∴a=0,3,
综上,可得满足题意的a的值有2个:0,3,
∴使一次函数y=-3x+a不经过第三象限,且使关于x的分式方程$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$有整数解的概率是:$\frac{2}{5}$.
故答案为$\frac{2}{5}$.
点评 (1)此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
(2)此题还考查了分式方程的求解问题,要注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
(3)此题还考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①k>0,b>0时,y=kx+b的图象在一、二、三象限;②k>0,b<0时,y=kx+b的图象在一、三、四象限;③k<0,b>0时,y=kx+b的图象在一、二、四象限;④k<0,b<0时,y=kx+b的图象在二、三、四象限.
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 35° | B. | 45° | C. | 55° | D. | 65° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 个 | B. | 2个 | C. | 1 个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (60+x)(40+x)=3100 | B. | (60+2x)(40+2x)=3100 | C. | (60+2x)(40+x)=3100 | D. | (60+x)(40+2x)=3100 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y=3x-2 | B. | y=-3x-2 | C. | y=3x+2 | D. | y=-3x+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com