精英家教网 > 初中数学 > 题目详情

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.
(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

解:(1)∵A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a≠0)上.

解得:
故抛物线的解析式为:y=x2-3x;

(2)设直线OB的解析式为y=k1x( k1≠0),
由点B(4,4)得
4=4 k1
解得k1=1.
∴直线OB的解析式为y=x,∠AOB=45°.
∵B(4,4),
∴点B向下平移m个单位长度的点B′的坐标为(4,0),
故m=4.
∴平移m个单位长度的直线为y=x-4.
解方程组
解得:
∴点D的坐标为(2,-2).

(3)∵直线OB的解析式y=x,且A(3,0).
∵点A关于直线OB的对称点A′的坐标为(0,3).
设直线A′B的解析式为y=k2x+3,此直线过点B(4,4).
∴4k2+3=4,
解得 k2=
∴直线A′B的解析式为y=x+3.
∵∠NBO=∠ABO,∴点N在直线A′B上,
设点N(n,n+3),又点N在抛物线y=x2-3x上,
n+3=n2-3n.
解得 n1=,n2=4(不合题意,舍去),
∴点N的坐标为(-).
如图,将△NOB沿x轴翻折,得到△N1OB1
则 N1 (-,-),B1(4,-4).
∴O、D、B1都在直线y=-x上.
∵△P1OD∽△NOB,
∴△P1OD∽△N1OB1
∴P1为O N1的中点.
==
∴点P1的坐标为(-,-).
将△P1OD沿直线y=-x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,
∴此点坐标为:().
综上所述,点P的坐标为(-,-)和().
分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网下列说法:
(1)如图1,已知PA=PB,则PO是线段AB的垂直平分线;
(2)对于反比例函数y=
2
x
,(x1,y1),(x2,y2)是其图象上两点,若x1<x2,则y1>y2; 
(3)对角线互相垂直平分的四边形是菱形;
(4)如图2,在△ABC中,∠A=30°,BC=2,则AC=4;
(5)一组对边平行的四边形是梯形;    
(6)y=
k
x
是反比例函数;
(7)若一个等腰三角形的两边长为2和3,那么它的周长为7,
其中正确的有(  )个.
A、0B、1C、2D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:AE=BF;
(2)为响应市人民政府“形象胜于生命”的号召,在甲建筑物上从A点到E点挂一长为30m的宣传条幅(如图2),在乙建筑物的顶部D点测得顶端A点的仰角为45°,测得条幅底端E点的俯角为30°,求底部不能直接到达的两建筑物之间的水平距离(答案可带根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知双曲线y=
k
x
(k>0)
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为
 
;若点A的横坐标为m,则点B的坐标可表示为
 

(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.

查看答案和解析>>

同步练习册答案