精英家教网 > 初中数学 > 题目详情
12.下面甲、乙、丙三个三角形中,和△ABC全等的是(  )
A.乙和丙B.甲和乙C.甲和丙D.只有甲

分析 首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.

解答 解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;
在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,
所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,
故选:A.

点评 此题考查了全等三角形的判定.此题难度不大,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知一次函数y=2x+4
(1)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(2)在(1)的条件下,求出△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为5的正方形.
(2)①在图2中以格点为顶点画一个三角形,使三角形三边长分别为$\sqrt{10}$、2$\sqrt{5}$、$\sqrt{10}$,
②求此三角形最长边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,正△ABC的边长为2,⊙C的半径为1,点D在⊙C上,以AD为边作正△ADE,连接CD、CE、BE.
(1)求证:BE=CD;
(2)∠BAE为多少度时,AD为⊙C的切线?
(3)请直接写出CE的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在平面直角坐标系中,反比例函数y=$-\frac{3}{x}$图象的两支分别在二、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,直径为1个单位长度的圆上一点A在数轴上的坐标为-1,该圆沿数轴向右滚动2014周,A点到达位置A′处,则A′的坐标为2014π-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:($\frac{1}{{x}^{2}-2x}$-$\frac{1}{{x}^{2}-4x+4}$)÷$\frac{2}{{x}^{2}-2x}$,其中x=6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点B出发,沿射线BC移动,过D、C、E三点作⊙O,点F为⊙O与射线AC的公共点,过F作⊙O的直径FP.当圆O与射线AC相切时,点E停止移动,在点E移动的过程中,点P移动路径的长(  )
A.$\frac{15}{4}$B.$\frac{15}{4}$πC.$\frac{15}{2}$D.$\frac{15}{2}$π

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.二次函数y=mx2-2x+1,当x$<\frac{1}{3}$时,y的值随x值的增大而减小,则m的取值范围是0<m≤3.

查看答案和解析>>

同步练习册答案