【题目】如图所示,在中,,,为外一点,,,
(1)求四边形的面积
(2)若为内一点,其它条件不变,请画出图形并判断四边形的面积是否有变化.若有变化请求出四边形的面积.
【答案】(1)36;(2)有变化,面积为24
【解析】
(1)在Rt△ACD中,由勾股定理得出AC 的长,再根据勾股定理的逆定理得出△ABC是直角三角形,分别求出两个直角三角形的面积,从而求解;
(2)有变化,方法同(1),只是此时四边形ABCD是凹四边形,面积是(1)中两个直角三角形的面积差.
解:(1)∵,,,
∴∠ADC=90°,
在Rt△ACD中,根据勾股定理:AC==5;
∵,,,AC2+BC2=52+122=169,AB2=132=169,
∴根据勾股定理的逆定理可得 ∠ACB=90°,即是直角三角形,
∴四边形的面积
(2)有变化,图形如图所示,
方法同(1),四边形的面积
四边形的面积 .
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-5,5),(-2,3).
(1)请在图中的网格平面内画出平面直角坐标系xOy;
(2)请画出△ABC关于y轴对称的△A1B1C1,并写出顶点A1,B1,C1的坐标
(3)请在x轴上求作一点P,使△PB1C的周长最小.请标出点P的位置(保留作图痕迹,不需说明作图方法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
①△BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求证:△ABP≌△ACQ;
(2)请判断△APQ是什么三角形,试说明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节临近,各家各户将会准备置办年货,为满足顾客的需求,某超市计划用不超过20000元购进甲、乙两种商品共1200件进行销售.甲、乙两种商品的进价分别为每件20元、14元,甲种商品每件的售价是乙种商品每件售价的1.4倍,若用280元在超市可购买甲种商品的件数比用800元购买乙种商品的件数少30件.
(1)甲乙两种商品的售价分别为每件多少元?
(2)超市为了让利顾客,决定甲种商品售价每件降低3元,乙种商品售价每件降低2元,问超市应如何进货才能获得最大利润?(假设购进的两种商品全部销售完)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(满分10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你求出摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市城市绿化工程招标,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,再由甲、乙合作12天,共完成总工作量的三分之二.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工l天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余工作,若要求完成此项工程的工程款不超过186万元,求甲、乙两队最多合作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.
(1)求大楼与电视塔之间的距离AC;
(2)求大楼的高度CD(精确到1米).
(参考数据:sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com