【题目】如图,△ABC的各个顶点都在边长为1的正方形网格的交点上.
(1)把△ABC绕原点O顺时针旋转90°,作出旋转后的△A1B1C1;
(2)若△A2B2C2与△ABC关于原点O对称,则△A2B2C2的各顶点坐标为:A2 ;B2 ;C2 .
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-,y1),C(-,y2)为函数图象上的两点,则y1<y2.其中正确结论是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(﹣1,0)两点,与反比例函数与反比例函数y=的图象在第一象限内的交点为M(m,4).
(1)求一次函数和反比例函数的表达式;
(2)求△AOM的面积;
(3)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF⊥x轴于F,交BC于G.
(1)AO的长为 ,AB的长为 (直接写出答案)
(2)求证:△ACE∽△BEF;
(3)若圆心H落在EF上,求BC的长;
(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点.
(1)求抛物线y=﹣x2+bx+c的解析式.
(2)在第二象限内取一点C,作CD⊥x轴于点D,连接AC,且AD=1,CD=5,将Rt△ACD沿x轴向右平移m个单位.
①当点C第一次落在抛物线上时,求m的值.
②当△ACD与抛物线y=﹣x2+bx+c的图象有交点时,求m的取值范围(直接答案即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,则EF的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=3,BC=4,请直接写出所有满足条件的AC的长;
(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形;
(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=. 若AO=85cm,BO=DO=65cm. 问: 当,较长支撑杆的端点离地面的高度约为_____.(参考数据:,.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=2,tanB=3,点D为边AB上一动点,在直线DC上方作∠EDC=∠ECD=∠B,得到△EDC,则CE最小值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com