【题目】如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.
(1)求C点坐标;
(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.
(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.
【答案】(1) C(5,﹣4);(2)90°;(3)见解析.
【解析】(1)利用非负数的和为零,各项分别为零,求出a,b即可;
(2)用同角的余角相等和角平分线的意义即可;
(3)利用角平分线的意义和互余两角的关系简单计算证明即可.
(1)∵(a﹣3)2+|b+4|=0,
∴a﹣3=0,b+4=0,
∴a=3,b=﹣4,
∴A(3,0),B(0,﹣4),
∴OA=3,OB=4,
∵S四边形AOBC=16.
∴0.5(OA+BC)×OB=16,
∴0.5(3+BC)×4=16,
∴BC=5,
∵C是第四象限一点,CB⊥y轴,
∴C(5,﹣4);
(2)如图,
延长CA,∵AF是∠CAE的角平分线,
∴∠CAF=0.5∠CAE,
∵∠CAE=∠OAG,
∴∠CAF=0.5∠OAG,
∵AD⊥AC,
∴∠DAO+∠OAG=∠PAD+∠PAG=90°,
∵∠AOD=90°,
∴∠DAO+∠ADO=90°,
∴∠ADO=∠OAG,
∴∠CAF=0.5∠ADO,
∵DP是∠ODA的角平分线,
∴∠ADO=2∠ADP,
∴∠CAF=∠ADP,
∵∠CAF=∠PAG,
∴∠PAG=∠ADP,
∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°
即:∠APD=90°
(3)不变,∠ANM=45°理由:如图,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∵DM⊥AD,
∴∠ADO+∠BDM=90°,
∴∠DAO=∠BDM,
∵NA是∠OAD的平分线,
∴∠DAN=0.5∠DAO=0.5∠BDM,
∵CB⊥y轴,
∴∠BDM+∠BMD=90°,
∴∠DAN=0.5(90°﹣∠BMD),
∵MN是∠BMD的角平分线,
∴∠DMN=0.5∠BMD,
∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°
在△DAM中,∠ADM=90°,
∴∠DAM+∠DMA=90°,
在△AMN中,
∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,
∴D点在运动过程中,∠N的大小不变,求出其值为45°
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣ x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣ (x﹣ )2+4上,能使△ABP为等腰三角形的点P的个数有( )
A.3个
B.4个
C.5个
D.6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于_________________.
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①_________________________________________________________.
方法②_________________________________________________________.
(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式间的等量关系吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com