【题目】如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.
(1)求∠ABC的度数.
(2)请在图中找出与∠ABC相等的角,并说明理由.
(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
【答案】(1)∠ABC=72°;(2)与∠ABC相等的角是∠ADC、∠DCN;(3)不发生变化.比值为.
【解析】
(1)由平行线的性质可求得∠A+∠ABC=180°,即可求得答案;
(2)利用平行线的性质可求得∠ADC=∠DCN,∠ADC+∠BCD=180°,则可求得答案;
(3)利用平行线的性质,可求得∠AEB=∠EBC,∠ADB=∠DBC,再结合角平分线的定义可求得答案.
(1)∵AM∥BN,∴∠A+∠ABC=180°,∴∠ABC=180°﹣∠A=180°﹣108°=72°.
(2)与∠ABC相等的角是∠ADC、∠DCN.
∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°,∴∠ADC=180°﹣∠BCD=180°﹣108°=72°,∴∠DCN=72°,∴∠ADC=∠DCN=∠ABC.
(3)不发生变化.
∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.
∵BD平分∠EBC,∴∠DBC∠EBC,∴∠ADB∠AEB,∴∴.
科目:初中数学 来源: 题型:
【题目】如图所示,已知正方形OABC,A(4,0),C(0,4),动点P从点A出发,沿ABCO的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA,OB的距离都等于a,作法如下:
①在∠AOB内作OB的垂线段NH,使NH=a,H为垂足;②过N作NM∥OB;③作∠AOB的平分线OP,与NM交于点P;④点P即为所求.其中③的依据是( )
A. 平行线之间的距离处处相等 B. 角的内部到角的两边的距离相等的点在角的平分线上
C. 角的平分线上的点到角的两边的距离相等 D. 线段垂直平分线上的点到线段两端点的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E点,DF⊥AC于F点,有下列结论:①BD=DC;②DE=DF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到B点与C点的距离不等.其中正确的是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(5分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):
⑴根据记录可知前三天共生产________辆;
⑵产量最多的一天比产量最少的一天多生产________辆;
⑶该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,,,把一条长为2016个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴n=3,m=﹣3
(1)若x2+2y2﹣2xy+4y+4=0,求xy的值
(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?
(3)根据以上的方法是说明代数式:x2+4x+y2﹣8y+21的值一定是一个正数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在八次数学测试中,甲、乙两人的成绩如下:
甲:89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92
请你从下列角度比较两人成绩的情况,并说明理由:
(1)分别计算两人的极差;并说明谁的成绩变化范围大;
(2)根据平均数来判断两人的成绩谁优谁次;
(3)根据众数来判断两人的成绩谁优谁次;
(4)根据中位数来判断两人的成绩谁优谁次;
(5)根据方差来判断两人的成绩谁更稳定.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com