精英家教网 > 初中数学 > 题目详情
如图,AD为△ABC的中线,DE、DF分别为△ADB、△ADC的角平分线,求证:BE+CF>EF.
分析:根据中线的定义可得BD=CD,在AD上截取DN=DB=DC,然后利用“边角边”证明△BDE和△NDE全等,根据全等三角形对应边相等可得BE=NE,同理证明△CDF和△NDF全等,根据全等三角形对应边相等可得CF=NF,然后根据三角形的任意两边之和大于第三边证明.
解答:证明:∵AD为△ABC的中线,
∴BD=CD,
如图,在AD上截取DN=DB=DC,
∵DE、DF分别为△ADB、△ADC的角平分线,
∴∠1=∠2,∠3=∠4,
在△BDE和△NDE中,
BD=DN
∠1=∠2
DE=DE

∴△BDE≌△NDE(SAS),
∴BE=NE,
同理,在△CDF和△NDF中,
CD=DN
∠3=∠4
DF=DF

∴△CDF≌△NDF(SAS),
∴CF=NF,
在△EFN中,NE+NF>EF,
∴BE+CF>EF.
点评:本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,作辅助线构造出全等三角形并把BE、CF、EF的长度转化为同一个三角形的三边是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在点C′的位置,BC=4,求BC′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,BE为△ABD的中线.
(1)在△BED中作BD边上的高,垂足为F;
(2)若△ABC的面积为20,BD=5.
①△ABD的面积为
 

②求△BDE中BD边上的高EF的长;
(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作BD边上的高,垂足为F;
(3)若△ABC的面积为60,BD=6,则△BDE中BD边上的高为多少?(请写出解题的必要过程)
(4)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代数式表示)

查看答案和解析>>

同步练习册答案