精英家教网 > 初中数学 > 题目详情
19、某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?
分析:(1)用每台的利润乘以销售量得到每天的利润.
(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.
(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.
解答:解:(1)y=(x-20)(-2x+80),
=-2x2+120x-1600;

(2)∵y=-2x2+120x-1600,
=-2(x-30)2+200,
∴当x=30元时,最大利润y=200元;

(3)由题意,y=150,
即:-2(x-30)2+200=150,
解得:x1=25,x2=35,
又销售量W=-2x+80随单价x的增大而减小,
所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.
点评:本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y=-10x+500.
(1)设商场每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)若物价部门规定,这种护眼台灯的销售单价不得高于32元,求该商场每月可获得最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?

查看答案和解析>>

科目:初中数学 来源:2013-2014学年贵州省黔西地区九年级第一学期期末模拟数学试卷(解析版) 题型:解答题

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量W(台),销售单价x(元)满足W=-2x+80,设销售这种台灯每天的利润为y(元).求y与x之间的函数关系式.

 

查看答案和解析>>

同步练习册答案