精英家教网 > 初中数学 > 题目详情

如图已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D的坐标为(-2,0).问:直线AC上是否存在点F,使得△ODF是等腰三角形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

解:(1)将点A(1,0)和点B(-3,0)代入抛物线解析式可得:
解得:
故所求抛物线解析式为:y=-x2-2x+3.

(2)存在符合条件的点P,

设直线AC的解析式为y=kx+m,
将点A及点C的坐标代入可得:
解得:
故直线AC的解析式为y=-3x+3,
①当PD=PO时,此时点P位于P1的位置,很明显P1的坐标为(-1,6);
②当OD=OP时,此时点P的一个位置为P2
设P2的坐标为(x,-3x+3),
∵OD=OP=2,
=2,
解得:x1=,x2=
很明显此时P的坐标为()或().
综上可得点P的坐标为(-1,6)或()或().
分析:(1)将点A及点B的坐标代入可得出a、b的值,继而得出抛物线的解析式;
(2)先确定直线AC的解析式,若△ODF是等腰三角形,在本题中只有两种情况,①PD=PO,②OD=OP,分别确定点P的坐标即可.
点评:本题考查了二次函数的综合应用,第一问比较简单,利用待定系数法求解即可,难点在第二问,第二问关键是分类讨论,在求解点P的坐标的时候要求我们结合图形进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于精英家教网点M,与x轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若AB中点是C,求sin∠CMB;
(3)如果一次函数y=kx+b过点M,且于y=mx2+nx+p相交于另一点N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明).精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).设抛物线的顶点为D,求解下列问题:
(1)求抛物线的解析式和D点的坐标;
(2)过点D作DF∥y轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;
(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D的坐标为(-2,0).问:直线AC上是否存在点F,使得△ODF是等腰三角形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若AB中点是C,求sin∠CMB;
(3)如果一次函数y=kx+b过点M,且于y=mx2+nx+p相交于另一点N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

同步练习册答案