【题目】已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.
(1)判断顶点是否在直线上,并说明理由.
(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.
(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.
【答案】(1)点在直线上,理由见解析;(2)的取值范围为或.(3)①当时,;②当时,;③当时,.
【解析】(1)写出点的坐标,代入直线进行判断即可.
(2)直线与轴交于点为,求出点坐标,把在抛物线上,代入求得,求出二次函数表达式,进而求得点A的坐标,数形结合即可求出时,的取值范围.
(3)直线与直线交于点,与轴交于点,而直线表达式为,联立方程组,得.点,.分三种情况进行讨论.
【解答】
(1)∵点坐标是,
∴把代入,得,
∴点在直线上.
(2)如图1,∵直线与轴交于点为,∴点坐标为.
又∵在抛物线上,
∴,解得,
∴二次函数的表达式为,
∴当时,得,,∴.
观察图象可得,当时,
的取值范围为或.
(3)如图2,∵直线与直线交于点,与轴交于点,
而直线表达式为,
解方程组,得.∴点,.
∵点在内,
∴.
当点,关于抛物线对称轴(直线)对称时,
,∴.
且二次函数图象的开口向下,顶点在直线上,
综上:①当时,;
②当时,;
③当时,.
科目:初中数学 来源: 题型:
【题目】用方程解答下列问题.
(1)一个角的余角比它的补角的还少15°,求这个角的度数;
(2)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将沿着过中点的直线折叠,使点落在边上的,称为第次操作,折痕到的距离记为;还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕到的距离记为;按上述方法不断操作下去…,经过第次操作后得到的折痕,到的距离记为,若,则的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值 (单位:克) | 5 | 2 | 0 | 1 | 3 | 6 |
袋 数 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)这批样品的平均质量比标准质量多还是少?多或少几克?
(2)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克?
(3)若该种食品的合格标准为450±5克,求该食品的抽样检测的合格率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在数轴上点表示数,点表示数,点表示数,是多项式的一次项系数,是绝对值最小的整数,单项式的次数为.
(1)= ,= ,= ;
(2)若将数轴在点处折叠,则点与点 重合( 填“能”或“不能”);
(3)点开始在数轴上运动,若点以每秒1个单位长度的速度向右运动,同时,点 和点分别以每秒3个单位长度和2个单位长度的速度向左运动,秒钟过后,若点与点B之间的距离表示为,点与点之间的距离表示为,则= , = (用含的代数式表示);
(4)请问:AB+BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点,,,,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.
(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从上调多少距离?(结果精确到)
(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)
(参考数据:,,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.
(1)在图中,求证:,.
(2)在图中,仍有(1)中的,成立,请解答下面问题:
①若,,,求和的长;
②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 45 | 30 |
租金/(元/辆) | 400 | 280 |
(1)共需租多少辆客车?
(2)请给出最节省费用的租车方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com