精英家教网 > 初中数学 > 题目详情
6.已知在数轴上的位置如图所示:

(1)填空:a与c之间的距离为a-c;
(2)化简:|a+1|-|c-b|+|b-1|;
(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求-2a2+2b-4c-(-a+5b-c)的值.

分析 根据的绝对值的意义即可化简求值.

解答 解:(1)由题意可知:a-c;
(2)由a、b、c在数轴上的位置可得:a>1,0<b<1,c<-1
∴a+1>0,b-1<0,c-b<0
∴原式=(a+1)-(b-c)+(1-b)
=a+1-b+c+1-b
=a-2b+c+2.
(3)由题意得:b-(-1)=-1-c,即b+1=-1-c,所以b+c=-2,
∵a+b+c=0,
∴a=2.
∴原式=-2a2+2b-4c+a-5b+c
=-2a2+a-3(b+c)
=-2×22+2-3×(-2)
=-8+2+6
=0

点评 本题考查绝对值的性质,涉及化简求值,要注意去绝对值号的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.在平面直角坐标系中,以点(3,-2)为圆心,r为半径的圆与坐标轴有且只有三个公共点,则r的值是3或$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在一面靠墙的空地上用长24m的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x(m),面积S(m2).
(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;
(2)若墙的最大可用长度为8m,求围成花圃的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.
(1)点C表示的数是-1;
(2)求当t等于多少秒时,点P到达点B处;
(3)点P表示的数是-7+2t(用含有t的代数式表示);
(4)求当t等于多少秒时,PC之间的距离为2个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.把下列各数分别填入相应的集合内:
0,-2.5,0.1212212221,3,-2,$\frac{π}{3}$,$\frac{22}{7}$,-0.1212212221…,(每两个1 之间依次增加1个2).
(1)正数集合:{                                     …};
(2)负数集合:{                                     …};
(3)整数集合:{                                     …};
(4)无理数集合:{                                   …}.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)如图①,画出△ABC绕点B逆时针旋转90°后的△Al BC1
(2)如图②,画出△ABC绕点B旋转180°后的△Al BC1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.把下列各数填在相应的大括号里:
-(-2)2,$\frac{22}{7}$,-0.101001,-|-2|,-0.$\stackrel{•}{1}\stackrel{•}{5}$,-$\frac{π}{2}$,0,$\frac{(-2)^{3}}{3}$
负整数集合:{                                                       …};
负分数集合:{                                                     …};
无理数集合:{                                                       …}.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:a+$\frac{1}{a}$=5,求:a2+$\frac{1}{a^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.x1,x2是方程x2+(m-1)x+(m2-3m+$\frac{9}{4}$)=0的二实根,求x12+x22的最大值与最小值.

查看答案和解析>>

同步练习册答案