精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,此抛精英家教网物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.
分析:(1)先根据直线y=-x+3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.
(2)根据(1)中抛物线的解析式可求出C,D两点的坐标,由于△ABM和△ABD同底,因此面积比等于高的比,即M点纵坐标的绝对值:D点纵坐标的绝对值=5:4.据此可求出P点的纵坐标,然后将其代入抛物线的解析式中,即可求出M点的坐标.
解答:解:(1)直线y=-x+3与坐标轴的两个交点坐标分别是
A(3,0),B(0,3),
抛物线y=-x2+bx+c经过A、B两点,
c=3
-9+3b+c=0,
得到b=2,c=3,
∴抛物线的解析式y=-x2+2x+3.

(2)①作经过点D与直线y=-x+3平行的直线交抛物线于点M.
精英家教网
则S△ABM=S△ABD
直线DM的解析式为y=-x+t.
由抛物线解析式y=-x2+2x+3=-(x-1)2+4,
得D(1,4),
∴t=5.
设M(m,-m+5),
则有-m+5=-m2+2m+3,
解得m=1(舍去),m=2.
∴M(2,3).
②易求直线DM关于直线y=-x+3对称的直线l的解析式为y=-x+1,l交抛物线于M.
设M(m,-m+1).
由于点M在抛物线y=-x2+2x+3上,
∴-m+1=-m2+2m+3.
解得m=
3+
17
2
,m=
3-
17
2

∴M(
3+
17
2
,-
1+
17
2
)或M(
3-
17
2
-1+
17
2

∴使△ABM的面积与△ABD的面积相等的点M的坐标分别是
(2,3),(
3+
17
2
,-
1+
17
2
),(
3-
17
2
-1+
17
2
).
点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法、图形面积的求法等知识点.考查了学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案