某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.
(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;
(2)每件售价定为多少元,才能使一天的利润最大。
(1)y=-10x2+280x-1600 (2)14元
【解析】
试题分析:(1)根据题中等量关系为:利润=(售价-进价)×售出件数,每件利润是(x-8)元,因为每件10元则卖出100件,每升高1元,件数即少了10件,那么件数是100-10(x-10)件,列出方程式为:y=(x-8)[100-10(x-10)],
即y=-10x2+280x-1600;
(2)该函数开口向下,要求出利润最高,则是求出函数的顶点的纵坐标,
将(1)中方程式配方得:
y=-10(x-14)2+360,
∴当x=14时,y最大=360元,
答:售价为14元时,利润最大
考点:二次函数的实际应用
点评:该题是常考题,主要考查学生对二次函数在实际中的应用,先分析、理清x和y的关系,再列出函数关系式,通过函数的性质,求出最值。
科目:初中数学 来源: 题型:
某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.
1.写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;
2.每件售价定为多少元,才能使一天的利润最大
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012-2013学年浙江省湖州十二中九年级第二学期期中考试数学试卷(带解析) 题型:解答题
某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.
(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;
(2)每件售价定为多少元,才能使一天的利润最大。
查看答案和解析>>
科目:初中数学 来源:2011-2012学年辽宁省九年级下学期第一次月考数学试卷(解析版) 题型:解答题
某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.
1.写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;
2.每件售价定为多少元,才能使一天的利润最大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com