【题目】如图,在圆O中,AB为直径,EF为弦,连接AF,BE交于点P,且EF2=PFAF.
(1)求证:F为弧BE的中点;
(2)若tan∠BEF=,求cos∠ABE的值.
【答案】(1)证明见解析;(2).
【解析】
(1)连接AE,根据EF2=PFAF得出△AFE∽△EFP,从而得出∠EAF=∠BEF,得证;
(2)连接BF、OF,OF交BE于点Q,根据tan∠BEF=,设BF=3m,则AF=4m,根据勾股定理AB=5m,再根据得出OF⊥BE,EQ=BQ,EF=BF=3m,再根据tan∠BEF=算出BQ=EQ= m,从而求算.
(1)证明:连接AE,
∵EF2=PFAF,
∴,
∵∠AFE=∠EFP,
∴△AFE∽△EFP,
∴∠EAF=∠BEF,
∴,
∴F为弧BE的中点;
(2)解:连接BF、OF,OF交BE于点Q,
∵AB是直径,
∴∠AFB=90°
∵tan∠BEF=,
∴tan∠BAF=,
设BF=3m,则AF=4m,根据勾股定理AB=5m,
∴OB=OF=m,
∵,
∴OF⊥BE,EQ=BQ,EF=BF=3m,
∵tan∠BEF=,
∴,
∴
∴BQ=EQ= m,
在Rt△BOQ中,cos∠ABE=
科目:初中数学 来源: 题型:
【题目】如图1,ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.
(1)求证:四边形ABCD是菱形;
(2)如图2,若∠ADC=60°,AD=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象如图所示,与轴的交点分别,且函数与轴交点在的下方,现给以下结论:①;②;③当时,的取值范围是;④.则下列说法正确的是( )
A.①②B.①③C.①④D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:
①乙队率先到达终点;
②甲队比乙队多走了126米;
③在47.8秒时,两队所走路程相等;
④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.
所有正确判断的序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,BE⊥CD于点E,DF⊥BC于点F.
(1)求证:BF=DE;
(2)分别延长BE和AD,交于点G,若∠A=45°,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=,BG=,且、满足下列关系:,,则GH= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3经过点 B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.
(1)求抛物线的表达式;
(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)
(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;
(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查(每名学生只能从A、B、C、D中选择一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
A:踢毽子 B:乒乓球 C:篮球 D:跳绳
根据以上信息,解答下列问题:
(1)被调查的学生共有 人,并补全条形统计图;
(2)在扇形统计图中,求表示区域D的扇形圆心角的度数;
(3)全校学生中喜欢篮球的人数大约是多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com