精英家教网 > 初中数学 > 题目详情

如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.

(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

(1)y=-x2-2x+3;(2)()  (3)当t为秒或2秒或3秒或秒时,以P、B、C为顶点的三角形是直角三角形

解析试题分析:(1)先由直线AB的解析式为y=x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;
(2)设第三象限内的点F的坐标为(m,-m2-2m+3),运用配方法求出抛物线的对称轴及顶点D的坐标,再设抛物线的对称轴与x轴交于点G,连接FG,根据S△AEF=S△AEG+S△AFG-S△EFG=3,列出关于m的方程,解方程求出m的值,进而得出点F的坐标;
(3)设P点坐标为(-1,n).先由B、C两点坐标,运用勾股定理求出BC2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,据此列出关于n的方程,求出n的值,再计算出PD的长度,然后根据时间=路程÷速度,即可求出此时对应的t值;②∠BPC=90°,同①可求出对应的t值;③∠BCP=90°,同①可求出对应的t值.
试题解析:(1)∵y=x+3与x轴交于点A,与y轴交于点B,
∴当y=0时,x=-3,即A点坐标为(-3,0),
当x=0时,y=3,即B点坐标为(0,3),
将A(-3,0),B(0,3)代入y=-x2+bx+c,得
, 解得
∴抛物线的解析式为y=-x2-2x+3;
(2)如图1,

设第三象限内的点F的坐标为(m,-m2-2m+3),则m<0,-m2-2m+3<0.
∵y=-x2-2x+3=-(x+1)2+4,
∴对称轴为直线x=-1,顶点D的坐标为(-1,4),
设抛物线的对称轴与x轴交于点G,连接FG,则G(-1,0),AG=2.
∵直线AB的解析式为y=x+3,
∴当x=-1时,y=-1+3=2,
∴E点坐标为(-1,2).
∵S△AEF=S△AEG+S△AFG-S△EFG=×2×2+×2×(m2+2m-3)-×2×(-1-m)=m2+3m,
∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,
解得:(舍去),
时,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=,∴点F的坐标为();
(3)设P点坐标为(-1,n).
∵B(0,3),C(1,0),
∴BC2=12+32=10.
分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2

即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2
化简整理得6n=16,解得n=
∴P点坐标为(-1,),
∵顶点D的坐标为(-1,4),
∴PD=4-=
∵点P的速度为每秒1个单位长度,
∴t1=
②如图3,如果∠BPC=90°,那么PB2+PC2=BC2

即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,
化简整理得n2-3n+2=0,解得n=2或1,
∴P点坐标为(-1,2)或(-1,1),
∵顶点D的坐标为(-1,4),
∴PD=4-2=2或PD=4-1=3,
∵点P的速度为每秒1个单位长度,
∴t2=2,t3=3;
③如图4,如果∠BCP=90°,那么BC2+PC2=PB2

即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2
化简整理得6n=-4,解得n=-
∴P点坐标为(-1,-),
∵顶点D的坐标为(-1,4),
∴PD=4+=
∵点P的速度为每秒1个单位长度,
∴t4=
综上可知,当t为秒或2秒或3秒或秒时,以P、B、C为顶点的三角形是直角三角形.
考点: 二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如果一条抛物线轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是       三角形;
(2)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由;
(3)在(2)的条件下,若以点E为圆心,r为半径的圆与线段AD只有一个公共点,求出r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

△ABC是锐角三角形,BC=6,面积为12.点P在AB上,点Q在AC上.如图9-33,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC的公共部分的面积为y.

(1)当RS落在BC上时,求x;
(2)当RS不落在BC上时,求y与x的函数关系式;
(3)求公共部分面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.

(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=-x+4x+5交x轴于A、B(以A左B右)两点,交y轴于点C.

(1)求直线BC的解析式;
(2)点P为抛物线第一象限函数图象上一点,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;
(3)在(2)的条件下,连接AP,抛物线上是否存在这样的点P,使得线段PA被BC平分,如果不存在,请说明理由;如果存在,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).

(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).

(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣)].

查看答案和解析>>

同步练习册答案