分析 取AB的中点E,连接ED和CE,作CF⊥AB于F,得到AE=BE=$\frac{1}{2}$AB,推出四边形ADCE与四边形BCDE是平行四边形,根据平行线的性质得到∠1=∠A,∠2=∠B,得到△ADE与△BCE是直角三角形,当CF最大时,梯形ABCD面积的最大,得到当△ADE与△BCE是等腰直角三角形时,CF最大,此时CF=$\frac{1}{2}$BE=$\frac{5}{2}$,于是得到结论.
解答 解:取AB的中点E,连接ED和CE,作CF⊥AB于F,
∴AE=BE=$\frac{1}{2}$AB,
∵AB=10,DC=5,
∴CD=$\frac{1}{2}$AB,
∴AE=CD=BE,
∵DC∥AB,
∴四边形ADCE与四边形BCDE是平行四边形,
∴CE∥AD,ED∥BC,
∴∠1=∠A,∠2=∠B,
∵∠A+∠B=90°,
∴∠A+∠2=∠B+∠1=90°,
∴△ADE与△BCE是直角三角形,
∵当CF最大时,梯形ABCD面积的最大,
∴当△ADE与△BCE是等腰直角三角形时,CF最大,此时CF=$\frac{1}{2}$BE=$\frac{5}{2}$,
∴S梯形ABCD=$\frac{1}{2}$(10+5)×$\frac{5}{2}$=$\frac{75}{4}$,
故答案为:$\frac{75}{4}$.
点评 本题考查了梯形的性质,梯形的面积的计算,平行四边形的判定和性质,得到△ADE与△BCE是等腰直角三角形梯形的面积最大是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个或2个 | B. | 2个或3个 | C. | 4个或3个 | D. | 5个或4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com