【题目】如图,已知是的外接圆,AB是的直径,D是AB延长线的一点, 交DC的延长线于 于F,且.
求证:DE是的切线;
若,求AE和BC的长.
【答案】(1)见解析;(2) ,
【解析】试题分析:(1)要证DE是⊙O的切线,只要连接OC,再证∠DCO=90°即可;
(2)先证明∠D=30°,∠COD=60°,得到AE的长,通过证明△OBC是等边三角形,得到BC的长.
试题解析:证明:(1)连接OC.∵AE⊥CD,CF⊥AB,又CE=CF,∴∠1=∠2.
∵OA=OC,∴∠2=∠3,∠1=∠3,∴OC∥AE,∴OC⊥CD,∴DE是⊙O的切线.
(2)∵AB=6,∴OB=OC=AB=3.
在Rt△OCD中,OD=OB+BD=6,OC=3,∴∠D=30°,∠COD=60°.
在Rt△ADE中,AD=AB+BD=9,∴AE=AD=.
在△OBC中,∵∠COD=60°,OB=OC,∴△OBC是等边三角形,∴BC=OB=3.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.
(1)求证:四边形ABEF是矩形;
(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为 (含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.
(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.
一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;
①直接判断123是不是“友好数”?
②直接写出共有 个“和平数”;
③通过列方程的方法求出既是“和平数”又是“友好数”的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:在数轴上,点M表示实数为x,点N表示实数为y,当x<y 时,点M,N之间的距离记作:MN =Y-X;当x>y时,点M,N之间的距离记作:MN = x-y,例如:x=-3,y=2, 则MN =2-(-3)=5.
如图,点A,B,C是数轴上从左向右依次排列的三点,且AC=17,BC=11,点B表示的数是-6.
(1) 点A表示的数是 ,点C表示的数是 ;
(2) 动点M,N分别从A,C同时出发,点M沿数轴向右运动,速度为1个单位长度∕秒,点N沿数轴向左运动,速度为2个单位长度∕秒,运动t秒后:
①点M表示的数 ,点N表示的数 ;(用含t的代数式表示)
②求当t为何值时,点M,N,B三点中相邻两个点之间的距离相等.(M、N、B三点中任意两点不重合)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知PA=PB=PC=2,∠BPC=120°,PA∥BC.以AB、PB为边作平行四边形ABPD,连接CD,则CD的长为( )
A. 2B. 2C. +1D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步推广“阳光体育”大课间活动,高新中学对已开设的A实心球,B立定跳远,C跑步,D排球四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;
(2)随机抽取了3名喜欢“跑步”的学生,其中有2名男生,1名女生,现从这3名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到一男生一女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com