精英家教网 > 初中数学 > 题目详情
已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:ADBC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=
3
4
,求⊙O2的直径长.
(1)证明:∵∠DO1A=∠CO1M,O1A=O1D=O1C=O1M
∴∠ADO1=∠O1MC=∠DAO1=∠O1CM(1分)
∴DACM(2分)

(2)证明:连接AM,(3分)
∵∠BME=∠O1MC
又∵∠O1MC=∠ADO1∴∠BME=∠ADO1
又∵AB切⊙O1于A
∴∠ADO1=∠MAB
∴∠MAB=∠BME∠F=∠F
∴△MBF△AMF(4分)
MF
AF
=
BF
MF

即:MF2=AF•BF(5分)

(3)在Rt△ACB中,
∵tan∠ACB=
AB
AC
=
3
4

又∵AC=8
∴AB=6(6分)
∵BC=
62+82
=10
∵AB2=BM•BC
∴62=BM×10
∴BM=3.6(7分)
又∵∠ACB=∠BME
∴tan∠BME=
3
4
=
BE
BM

∴BE=2.7(8分)
∴ME=
3.62+2.72
=4.5(9分).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,P是⊙O外一点,割线POB与⊙O相交于A、B,切线PC与⊙O相切于C,若PA=2,PC=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是(  )
A.65°B.115°C.65°和115°D.130°和50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,线段AB与⊙O相切于点C,连接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个同心圆的半径分别是3cm和6cm,大⊙O的弦MN=6
3
cm,试判断MN与小⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是______(结果保留准确值).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,∠ACB=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点作⊙O.
(1)求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,若BC=9,CA=12.求
EF
AC
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,ABDC.
①若∠A=90°,AB+CD=BC,则以AD为直径的圆与BC相切;
②若∠A=90°,当以AD为直径的圆与BC相切,则以BC为直径的圆也与AD相切;
③若以AD为直径的圆与BC相切,则AB+CD=BC;
④若以AD为直径的圆与BC相切,则以BC为直径的圆与AD相切.
以上判断正确的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案