如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是___________ (用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
(1)2;(2)①y=,②分两种情况:Ⅰ.当2<x<3时,y=,
Ⅱ.当3≤x≤6时,y=x2?;(3)当 x=时,y最大=.
解析试题分析:(1)根据等边三角形的三边相等,则△EFG的边长是点E移动的距离;根据等边三角形的三线合一和F点移动速度是E点移动速度的2倍,即可分析出BF=4,此时等边三角形的边长是2,则点G和点D重合;
(2)①当0<x≤2时,重叠部分的面积即为等边三角形的面积;
②当2<x≤6时,分两种情况:当2<x<3时和当3≤x≤6时,进行计算;
(3)分别求得(2)中每一种情况的最大值,再进一步比较取其中的最大值即可.
试题解析:
解:(1)∵点E、F同时从B点出发,沿射线BC向右匀速移动,且F点移动速度是E点移动速度的2倍,
∴BF=2BE=2x,
∴EF=BF-BE=2x-x=x,
∴△EFG的边长是x;
过D作DH⊥BC于H,得矩形ABHD及直角△CDH,连接DE、DF.
在直角△CDH中,∵∠C=30°,CH=BC-AD=3,
∴DH=CH•tan30°=3×=.
当x=2时,BE=EF=2,
∵△EFG是等边三角形,且DH⊥BC交点H,
∴EH=HF=1.
∴DE=DF==2,
∴△DEF是等边三角形,
∴点G的位置在D点.
(2)①当0<x≤2时,△EFG在梯形ABCD内部,所以y=;
②分两种情况:
Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上,
△EFG与梯形ABCD重叠部分为四边形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
∵在Rt△NMG中,∠G=60°,GN=3x-6,
∴GM=(3x-6),
由勾股定理得:MN=(3x-6),
∴S△GMN=×GM×MN=×(3x-6)×(3x-6)=(3x-6)2,
所以,此时y=-(3x-6)2=;
Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,
△EFG与梯形ABCD重叠部分为△ECP,
∵EC=6-x,
∴y=(6-x)2=x2?;
(3)当0<x≤2时,
∵y=x2,在x>0时,y随x增大而增大,
∴x=2时,y最大=;
当2<x<3时,∵y=,在x=时,y最大=;
当3≤x≤6时,∵y=x2?;,在x<6时,y随x增大而减小,
∴x=3时,y最大=.
综上所述:当 x=时,y最大=.
考点:1.二次函数的最值;2.梯形.
科目:初中数学 来源: 题型:解答题
已知:抛物线与x轴的两个交点分别为A(1,0)和B(3,0),与y轴交于点C.
(1)求此二次函数的解析式;
(2)写出点C的坐标________,顶点D的坐标为__________;
(3)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式;
(4)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,请直接写出所有满足条件的E点的坐标__________________________________(不必写出过程).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.
(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数y=-x2-x.
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在矩形OABC中,点A(0,10),C(8,0).沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC, OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.
(1)求D的的坐标及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).
(1)求抛物线的解析式;
(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q。
(1)求点A,B,C的坐标。
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。
(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com