分析 (1)连接OE,由折叠的性质结合条件可证得OE∥AF,再由条件可得AF⊥EF,则可证得结论;
(2)可设OA=OE=x,则OB=10-x,在Rt△OBE中,可求得x的值,进一步可求得⊙O的直径.
解答 (1)证明:
如图,连接OE,
∵OA=OE,
∴∠EAO=∠AEO,
由折叠可得∠EAO=∠FAE,
∴∠FAE=∠AEO,
∴AF∥OE,
∴∠AFE+∠OEF=180°,
在矩形ABCD中,∠ABC=90°,
由折叠可知∠AFE=∠ABC=90°,
∴∠OEF=90°,
∴OE⊥EF,且点E在圆上,OE为半径,
∴EF是⊙O的切线;
(2)解:
∵四边形ABCD是矩形,CD=10,
∴AB=CD=10,∠ABE=90°,
设OA=OE=x,则OB=10-x,
在Rt△OBE中,∠OBE=90°,EB=5,
由勾股定理可得OB2+BE2=OE2,
∴(10-x)2+52=x2,解得x=$\frac{25}{4}$,
∴AH=2x=$\frac{25}{2}$,
∴⊙O的直径为$\frac{25}{2}$.
点评 本题主要考查切线的判定和性质及折叠的性质,掌握切线的两种证明方法是解题的关键,在折叠中求有关线段长度时注意方程思想的应用.
科目:初中数学 来源: 题型:解答题
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
九(1)班 | 100 | 94 | b | 93 | 12 |
九(2)班 | 99 | a | 95.5 | 93 | 8.4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{8}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com