分析 由于已知抛物线的顶点坐标,则可设顶点式y=a(x-2)2+1,然后把B点坐标代入求出a即可得到抛物线解析式.
解答 解:设抛物线解析式为y=a(x-2)2+1,
把B(1,0)代入得a+1=0,解得a=-1,
所以抛物线解析式为y=-(x-2)2+1,即y=-x2+4x-3
故答案为:y=-x2+4x-3.
点评 本题考查了待定系数法求二次函数的解析式,关键是在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\root{3}{16}$ | B. | $\sqrt{a}$ | C. | $\sqrt{-{a}^{2}-1}$ | D. | $\sqrt{{a}^{2}+2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第一、三象限 | B. | 第二、四象限 | C. | 第一、二象限 | D. | 第一、二、三象限 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -2≤a≤-1 | B. | -2≤a≤-$\frac{1}{4}$ | C. | -1≤a≤-$\frac{1}{2}$ | D. | -1≤a≤-$\frac{1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com