精英家教网 > 初中数学 > 题目详情

【题目】如图,将三角形ABC沿射线BA方向平移到三角形A'B'C'的位置,连接AC'

1AA'CC'的位置关系为    

2)求证:∠A'+CAC'+AC'C=180°;

3)设ACB=y,试探索∠CAC'xy之间的数量关系,并证明你的结论.

【答案】1平行;(2)证明见解析;(3)∠CAC=x+y.证明见解析.

【解析】

1)由平移的性质直接得到答案,

2)先证明四边形是平行四边形,利用平行四边形的性质及三角形内角和定理可得答案,

3)过点AAD,交于点D,利用平行线的性质及角的和差可得答案.

解:(1)由平移的性质得:

故答案为:平行.

2)证明:根据平移性质可知AC

∴四边形是平行四边形,

∴∠A'+CAC'+AC'C=180°

3)结论:

证明:过点AAD,交于点D

根据平移性质可知,∴AD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某沿海开放城市A接到台风警报,在该市正南方向100kmB处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市ABC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:四边形AFCE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOMAB

1)∠AOC的邻补角为    (写出一个即可);

2)若∠1=∠2,判断ONCD的位置关系,并说明理由;

3)若∠1=BOC,求∠MOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接ADBD,其中BD交直线AP于点E.

(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;

(3)连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a,b,c表示△ABC的三边长,且满足+|a-12|+(b-13)2=0,则△ABC是( )

A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,点EAC的中点,AC=2ABBAC的平分线ADBC于点D,作AFBC,连接DE并延长交AF于点F,连接FC.

求证:四边形ADCF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:

(1)本次被调查的学生有名;
(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;
(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O△ABC内一点,连结OBOC,并将ABOBOCAC的中点DEFG依次连结,得到四边形DEFG

1)求证:四边形DEFG是平行四边形;

2)若MEF的中点,OM=3∠OBC∠OCB互余,求DG的长度.

查看答案和解析>>

同步练习册答案