精英家教网 > 初中数学 > 题目详情
(2012•绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形      
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断(  )
分析:由甲的思路画出相应的图形,连接OB,由BC为OD的垂直平分线,得到OE=DE,且BC与OD垂直,可得出OE为OD的一半,即为OB的一半,在直角三角形BOE中,根据一直角边等于斜边的一半可得出此直角边所对的角为30°,得到∠OBE为30°,利用直角三角形的两锐角互余得到∠BOE为60°,再由∠BOE为三角形AOB的外角,且OA=OB,利用等边对等角及外角性质得到∠ABO也为30°,可得出∠ABC为60°,同理得到∠ACB也为60°,利用三角形的内角和定理得到∠BAC为60°,即三角形ABC三内角相等,进而确定三角形ABC为等边三角形;
由乙的思路画出相应的图形,连接OB,BD,由BD=OD,且OB=OD,等量代换可得出三角形OBD三边相等,即为等边三角形,的长∠BOE=∠DBO=60°,由BC垂直平分OD,根据三线合一得到BE为角平分线,可得出∠OBE为30°,又∠BOE为三角形ABO的外角,且OA=OB,利用等边对等角及外角的性质得到∠ABO也为30°,可得出∠ABC为60°,同理得到∠ACB也为60°,利用三角形的内角和定理得到∠BAC为60°,即三角形ABC三内角相等,进而确定三角形ABC为等边三角形,进而得出两人的作法都正确.
解答:解:根据甲的思路,作出图形如下:

连接OB,
∵BC垂直平分OD,
∴E为OD的中点,且OD⊥BC,
∴OE=DE=
1
2
OD,又OB=OD,
在Rt△OBE中,OE=
1
2
OB,
∴∠OBE=30°,又∠OEB=90°,
∴∠BOE=60°,
∵OA=OB,∴∠OAB=∠OBA,
又∠BOE为△AOB的外角,
∴∠OAB=∠OBA=30°,
∴∠ABC=∠ABO+∠OBE=60°,
同理∠C=60°,
∴∠BAC=60°,
∴∠ABC=∠BAC=∠C,
∴△ABC为等边三角形,
故甲作法正确;
根据乙的思路,作图如下:

连接OB,BD,
∵OD=BD,OD=OB,
∴OD=BD=OB,
∴△BOD为等边三角形,
∴∠OBD=∠BOD=60°,
又BC垂直平分OD,∴OM=DM,
∴BM为∠OBD的平分线,
∴∠OBM=∠DBM=30°,
又OA=OB,且∠BOD为△AOB的外角,
∴∠BAO=∠ABO=30°,
∴∠ABC=∠ABO+∠OBM=60°,
同理∠ACB=60°,
∴∠BAC=60°,
∴∠ABC=∠ACB=∠BAC,
∴△ABC为等边三角形,
故乙作法正确,
故选A
点评:此题考查了垂径定理,等边三角形的判定,含30°直角三角形的判定,三角形的外角性质,以及等腰三角形的性质,熟练掌握定理及判定是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,扇形DOE的半径为3,边长为
3
的菱形OABC的顶点A,C,B分别在OD,OE,
DE
上,若把扇形DOE围成一个圆锥,则此圆锥的高为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B两点.
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为
14
5n(n+1)
6
5n(n+1)
14
5n(n+1)
6
5n(n+1)
(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.
(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.

查看答案和解析>>

同步练习册答案