【题目】甲地与丙地由公路连接,乙地在甲、丙两地之间,一辆汽车在下午1点钟从离甲地10千米的M地出发向乙地匀速前进,15分钟后离甲地20千米,当汽车行驶到离甲地150千米的乙地时,接到通知要在下午5点前赶到离乙地30千米的丙地.汽车若按原速能否按时到达?若能,是在几点几时到达;若不能,车速应提高到多少才能按时到达?
【答案】汽车原速不能按时到达,车速应提高到60千米/小时才能按时到达
【解析】
根据从离甲地10千米的M地出发向乙地匀速前进,15分钟后离甲地20千米可求得汽车的速度为40千米/小时,再求得当汽车行驶到离甲地150千米的乙地时,此时汽车所用的时间为小时;因接到通知要在下午5点前赶到离乙地30千米的丙地,此时剩时小时,求得小时汽车原速所走的路程,与30比较即可判定汽车按原速能否按时到达;用30除以即可求得提速后的车速.
∵从离甲地10千米的M地出发向乙地匀速前进,15分钟后离甲地20千米,
∴汽车的速度为:(20-10)÷ =40(千米/小时);
当汽车行驶到离甲地150千米的乙地时,此时汽车所用的时间为:(小时);
因接到通知要在下午5点前赶到离乙地30千米的丙地,此时剩时:5-1-=(小时),
∵40×=20<30,
∴汽车原速不能按时到达.
∵30÷=60(千米/小时),
∴车速应提高到60千米/小时才能按时到达.
答:汽车原速不能按时到达,车速应提高到60千米/小时才能按时到达.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:
(1)AF=CG;
(2)CF=2DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的正方形网格中,点P是的边OB上的一点.
(1)过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;
(2)线段PH的长度是点P到直线__________的距离;
(3)线段__________的长度是点C到直线OB的距离;
(4)线段PC、PH、OC这三条线段大小关系是__________(用“<”号连接).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)单项式﹣2x3ym与5xn+1y的差是一个单项式,求的值;
(2)化简求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列变形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=两边同除以,得x=1;
③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).
错误变形的个数是( )个.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判断这个四边形是平行四边形的条件共有
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,
求证:(1)EM=FN;
(2)EF与MN互相平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4). (Ⅰ)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(Ⅱ)以点O为位似中心,将△ABC缩小为原来的 ,得到△A2B2C2 , 请在图中y轴右侧,画出△A2B2C2 , 并求出∠A2C2B2的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com