精英家教网 > 初中数学 > 题目详情

【题目】如图,AB12C是线段AB上一点,分别以ACCB为边在A的同侧作等边△ACP和等边△CBQ,连接PQ,则PQ的最小值是(  )

A. 3B. 4C. 5D. 6

【答案】D

【解析】

分别延长APBQ交于点D,易证四边形CPDQ为平行四边形,得出PD+DQPC+CQAC+BC12,作△ABD的中位线MN,则MDDNMNAB,运用中位线的性质和等边三角形的性质求出MDDNMNAB,进而求得MD+DNPD+DQ,得出PMQN,作PEMNQFMN,则PEQF,然后证得△PME≌△QNF,从而证得MNEF,根据平行线间的距离得出PQEF,从而求得PQ的最小值.

解:如图,分别延长APBQ交于点D

∵∠AQCB60°

ADCQ

∵∠BCPCA60°

BDPC

四边形CPDQ为平行四边形,

PDCQPCDQ

PD+DQPC+CQAC+BC12

ABD的中位线MN,则MDDNMNAB

MD+DNAB12

MD+DNPD+DQ

PMQN

PEMNQFMN

PEQF

∴∠PEMQFN90°,且PMEQNF60°PMQN

∴△PME≌△QNFAAS),

EMFN

MNEF

PQEF

C是线段AB的中点时,PQ的值最小,最小值为AB6

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC米,斜坡BC的坡度i=1 .小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°

1)求坡角∠BCD

2)求旗杆AB的高度.

(参考数值:sin20°≈0.34cos20°≈0.94tan20°≈0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0 mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,其中第3天时硫化物的浓度降为4 mg/L.从第3天起所排污水中硫化物的浓度y与时间x满足下面表格中的关系:

时间x(天)

3

4

5

6

8

……

硫化物的浓y(mg/L)

4

3

2.4

2

1.5

(1)求整改过程中当0≤x<3时,硫化物的浓度y与时间x的函数表达式;

(2)求整改过程中当x≥3时,硫化物的浓度y与时间x的函数表达式;

(3)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0 mg/L?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD是⊙O的一条弦,且CDAB于点E,连接ADBCCO

1)当∠BCO25°时,求∠A的度数;

2)若CD4BE4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在五边形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,试猜想BCCDDE之间的数量关系.小明经过仔细思考,得到如下解题思路:

将△ABC绕点A逆时针旋转90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即点DEF三点共线,易证△ACD   ,故BCCDDE之间的数量关系是   

2)如图2,在四边形ABCD中,ABAD,∠ABC+D180°,点EF分别在边CBDC的延长线上,∠EAFBAD,连接EF,试猜想EFBEDF之间的数量关系,并给出证明.

3)如图3,在△ABC中,∠BAC90°ABAC,点DE均在边BC上,且∠DAE45°,若BD2CE3,则DE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情填,

在综合与实践课上,老师让同学们以矩形纸片的剪拼为主题开展数学活动,如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD、并且量得AB2cmAC4cm.

操作发现:

(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到加图2所示的△AC′D,过点CAC′的平行线,与DC′的延长线交于点E,则四边形ACEC'的形状是_________

(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使BAD三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC'的中点F,连精AF并延长到点G,使FGAF,连接CGC′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′CBC′相交于点H.如图4所示,连接CC',试求CH的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某水果店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图.

1)下列关于三段函数图象的说法不正确的是(  )

A、第①段函数图象表示数量不多于5千克时,单价为10元.

B、第③段函数图象表示数量不少于11千克时,单价为8.8元.

C、第②段函数图象可知:当一次性数量多于5千克但不多于11千克时,每多买1千克,单价就降低1.2元.

2)求图中第②段函数图象的解析式,并指出x的取值范围.

3)某天老李计划用90元去该店买A种水果,问老李一次性(或最多)能买回多少千克A种水果?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为

(1)求袋中黄球的个数;

(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;

(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?

查看答案和解析>>

同步练习册答案