精英家教网 > 初中数学 > 题目详情
2.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+α)2的形式.但对于二次三项式x2+2ax-8a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-8a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax-8a2=(x2+2ax+a2)-a2-8a2=(x+a)2-(3a)2=(x+4a)(x-2a).像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用以上“配方法”解决:
(1)分解因式:a2-6a-16;
(2)当a为何值时,二次三项式a2+4a+5有最小值?

分析 (1)原式利用“配方法”分解即可;
(2)原式利用“配方法”变形后,求出最小值即可.

解答 解:(1)原式=a2-6a+9-25=(a-3)2-25=(a+2)(a-8);
(2)原式=a2+4a+4+1=(a+2)2+1≥1,
当a+2=0,即a=-2时,原式有最小值.

点评 此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.数学活动
活动材料 现有若干块如图①所示的正方形和长方形硬纸片.
活动要求  用若干块这样的正方形和长方形硬纸片拼成一个新的长方兴,通过不同的方法计算面积,探求相应的等式.
例如,由图②,我们有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2
问题:(1)选取正方形、长方形硬纸片共8块,拼出一个如图③的长方形,计算它的面积,并写出相应的等式;
(2)试借助拼图的方法,把二次三项式2a2+3ab+b2分解因式,并把所拼的图形画在虚线方框内.
(3)将2b2-3ab+a2分解因式(直接写出结果,不需要画图).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.把下列各式分解因式:
(1)3ax-3ay+xy-y2
(2)8x3+4x2-2x-1;
(3)5x2-15x+2xy-6y:
(4)4xy+1-4x2-y2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.在数轴上点A、点B所表示的数分别是a、b,那么能够判断|a|<|b|的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.若|x-2|+|y+3|=0,并且|x-2|和|z-5|互为相反数,计算:x,y,z的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知:x2-3x+5=(x-2)2+a(x-2)+b,则a+b=4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在正方形ABCD中,AB=3,E为BC上一点,连接AE,H为AE的中点,过点H作直线FG交AB于F,交CD于G,若∠AHF=30°,AE=FG,则CG的长度为2-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在矩形ABCD内部画△ADP,使PA=PD,若∠APD=30°,点P在∠ABC的平分线上,则$\frac{AB}{BC}$的值是(  )
A.$\frac{3+\sqrt{3}}{2}$B.$\frac{2\sqrt{3}+3\sqrt{2}}{3}$C.$\frac{3\sqrt{3}}{2}$D.$\frac{5\sqrt{2}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.分解因式:
(1)4x2-8xy+2x          
(2)a4-8a2+16.

查看答案和解析>>

同步练习册答案