精英家教网 > 初中数学 > 题目详情
3.先化简,再求值:$\frac{1}{4}$(4a2-2a-8)-($\frac{1}{2}$a-1),其中a=1.

分析 先化简然后将a的值代入即可求出答案.

解答 解:当a=1时,
原式=a2-$\frac{1}{2}$a-2-$\frac{1}{2}$a+1
=a2-a-1
=1-1-1
=-1

点评 本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.在函数y=$\frac{\sqrt{x-4}}{x-3}$中,自变量x的取值范围是x≥4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:x(x+2)+(x-1)(x+1)-2x,其中x=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在等腰△ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=ax2+$\frac{7}{2}$x+c经过A(8,0)、B(0,4)两点.
(1)求抛物线的解析式;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段CA、OA、AB和抛物线于点M、E、Q和点P,连接PA、PB,设直线l移动的时间为t(0<t<4)秒,当t为何值时,线段PQ最长?
(3)在(2)的条件下,抛物线上是否存在一点P,使△PAM的内角为直角?若存在,请直接写出点P的坐标;若不存在,请说明理由.(温馨提示:若直线y=k1x+b1与直线y=k2x+b2垂直,则k1•k2=-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:
苹果总质量n(kg)1002003004005001000
损坏苹果质量m(kg)10.5019.4230.6339.2449.54101.10
苹果损坏的频率$\frac{m}{n}$(结果保留小数点后三位)0.1050.0970.1020.0980.0990.101
估计这批苹果损坏的概率为0.1(结果保留小数点后一位),损坏的苹果约有1000kg.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.(-3)2=6C.(-a32=a6D.a2+a3=a5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.一个扇形的半径长为5,且圆心角为60°,则此扇形的弧长为$\frac{5}{3}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某校为更好的开展“冬季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳长绳、踢毽子、背夹球、拔河共四类),并将统计结果绘制成如图不完整的频数分布表.
根据以上信息回答下列问题:
最喜爱的趣味运动项目类型频数分布表:
 项目类型 频数频率 
 跳长绳 25 a
 踢毽子 20 0.2
 背夹球 b 0.4
 拔河15  0.15
(1)直接写出a=0.25,b=40;
(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);
(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?

查看答案和解析>>

同步练习册答案