【题目】如图,把一张长,宽的矩形硬纸板的四周各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为.
请用含的代数式表示长方体盒子的底面积;
当剪去的小正方形的边长为多少时,其底面积是?
试判断折合而成的长方体盒子的侧面积是否有最大值?若有,试求出最大值和此时剪去的小正方形的边长;若没有,试说明理由.
【答案】(1);(2)当剪去的小正方形的边长为时,其底面积是;(3)当剪去的小正方形的边长为时,长方体盒子的侧面积有最大值.
【解析】
(1)由图可知:长方体盒子的底面的长和宽分别是原矩形的长和宽减去两个小正方形的边长,根据矩形的面积=长×宽;
(2)得出一个关于正方形边长x的方程.从而求解;
(3)长方体盒子的侧面积是四个小矩形,都是以正方形的边长为宽,以盒子的底面的长或宽为长,根据这个关系,我们可列出关于侧面积和正方形边长x的函数关系式,然后根据函数的性质来求出这个最值.
解:;
依题意得:,即,
解得,(不合题意,舍去),
∴当剪去的小正方形的边长为时,其底面积是;
设长方体盒子的侧面积是,则,即,
,,
当时,,
即当剪去的小正方形的边长为时,长方体盒子的侧面积有最大值.
科目:初中数学 来源: 题型:
【题目】抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标;
(3)画出这条抛物线大致图象;
(4)根据图象回答:
① 当x取什么值时,y>0 ?
② 当x取什么值时,y的值随x的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一勘测人员从B点出发,沿坡角为15°的坡面以5千米/时的速度行至D处,用了12分钟,然后沿坡角为20°的坡面以3千米/时的速度到达山顶A点处,用了10分钟,求山高(即AC的长度)及(即BC的长)(精确到0.01千米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.
(1)求点D坐标.
(2)求S关于t的函数关系式.
(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.
(1)求证:AE=CD;
(2)求证:AE⊥CD;
(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有 (请写序号,少选、错选均不得分).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一条直线过点,且与抛物线交于,两点,其中点的横坐标是.
求这条直线的函数关系式及点的坐标.
在轴上是否存在点,使得是直角三角形?若存在,求出点的坐标,若不存在,请说明理由.
过线段上一点,作轴,交抛物线于点,点在第一象限,点,当点的横坐标为何值时,的长度最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有颜色不同的8个小球,其中红球3个,黑球5个.
(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:
事件A | 必然事件 | 随机事件 |
m的值 |
(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com