精英家教网 > 初中数学 > 题目详情
8.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.
(1)求证:△PCE≌△EDQ;
(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;
(3)如图3,若△ARB∽△PEQ,求∠MON大小

分析 (1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论
(2)连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;
(3)由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和可得∠MON=135°;

解答 解(1)证明:∵点C、D、E分别是OA,OB,AB的中点,
∴DE=OC,∥OC,CE=OD,CE∥OD,
∴四边形ODEC是平行四边形,
∴∠OCE=∠ODE,
∵△OAP,△OBQ是等腰直角三角形,
∴∠PCO=∠QDO=90°,
∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,
∵PC=$\frac{1}{2}$AO=OC=ED,CE=OD=$\frac{1}{2}$OB=DQ,
在△PCE与△EDQ中,
$\left\{\begin{array}{l}{PC=DE}\\{∠PCE=∠EDQ}\\{CE=DQ}\end{array}\right.$,
∴△PCE≌△EDQ;

(2)如图2,连接RO,

∵PR与QR分别是OA,OB的垂直平分线,
∴AP=OR=RB,
∴∠ARC=∠ORC,∠ORQ=∠BRO,
∵∠RCO=∠RDO=90°,∠COD=150°,
∴∠CRD=30°,
∴∠ARB=60°,
∴△ARB是等边三角形;

(3)如图3中,

由(1)得,EQ=EP,∠DEQ=∠CPE,
∴∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-∠CPE=∠ACE-∠RCE=∠ACR=90°,
∴△PEQ是等腰直角三角形,
∵△ARB∽△PEQ,
∴∠ARB=∠PEQ=90°,
∴∠OCR=∠ODR=90°,∠CRD=$\frac{1}{2}$∠ARB=45°,
∴∠MON=180°-∠CRD=135°.

点评 本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,熟练掌握等腰直角三角形的性质以及等边三角形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,∠ABD=30°,∠ADB=80°.
(1)求△ACE的各内角度数.
(2)试说明BD=DE+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.若(x-2)(x2+ax+b)的积中不含x的二次项和一次项,求a、b的值分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=$\frac{12}{13}$.
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围;
(3)若△AME∽△ENB,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.数据2,1,0,3,4的方差是2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,E,F分别是边长为a的正方形ABCD的边AB,AD上的点,∠ECF=45°.
(1)求证:CF平分∠DFE;
(2)若$\frac{AE}{AB}$=k.用含有k的代数式表示$\frac{CE}{CF}$的值;
(3)若a=2,AE=x,AF=y.
①求y与x之间的函数关系式,并写出自变量x的取值范围;
②确定当$\frac{5\sqrt{2}}{8}$≤$\frac{CE}{CF}$≤$\frac{3\sqrt{2}}{4}$时,y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N.

(1)观察图1,直接写出∠AEM与∠BNE的关系是∠AEM+∠BNE=90°;(不用证明)
(2)如图1,当M、N都分别在AB、BC上时,可探究出BN与AM的关系为:BN⊥AM,BN-AM=2;(不用证明)
(3)如图2,当M、N都分别在AB、BC的延长线上时,(2)中BN与AM的关系式是否仍然成立?若成立,请说明理由:若不成立,写出你认为成立的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列各数中,比-3大1的数是(  )
A.4B.2C.-4D.-2

查看答案和解析>>

同步练习册答案